рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Этапы развития архитектуры универсальных микропроцессоров

Этапы развития архитектуры универсальных микропроцессоров - раздел Электроника, Основные понятия и характеристики архитектуры микропроцессоров Первый Микропроцессор Был Разработан Фирмой Intel В 1971 Году. Он Получил Наз...

Первый микропроцессор был разработан фирмой Intel в 1971 году. Он получил название I-4004, имел 4-разрядную структуру и был ориентирован на использование в калькуляторах. Впоследствии этой же фирмой был выпущен еще один 4-разрядный микропроцессор - I-4040.

На протяжении многих лет крупнейшими разработчиками и производителями универсальных микропроцессоров в мире являются компании Intel (70-75 % мирового производства) и Advanced Micro Devices (AMD), занимающая 20-25 % рынка. Их разработки идут во многом параллельными путями. В нашем курсе мы будем рассматривать развитие архитектуры универсальных микропроцессоров на примере микропроцессоров фирмы Intel.

В 1972 году на рынке появился 8-разрядный МП I-8008, а вслед за ним, в 1974 году,- I-8080. Последний микропроцессор сыграл значительную роль в развитии микропроцессорной техники. Во многом он заложил основы архитектуры для всех последующих поколений микропроцессоров. Он имеет раздельные 8-разрядную шину данных и 16-разрядную шину адреса, возможность подключения памяти емкостью до 64 Кбайт и до 256 внешних устройств. Микропроцессор содержит 16-разрядные указатель команд (Instruction Pointer - IP) и указатель стека (Stack Pointer - SP), шесть 8-разрядных регистров общего назначения (РОН), которые могут использоваться как три 16-разрядные. Система команд состоит из 78 базовых команд. При загрузке операнда из памяти применяется прямая, косвенная регистровая или стековая адресация. В общем случае программист может использовать регистровую, прямую, косвенную, непосредственную, индексную, прямую и косвенную автоинкрементную и автодекрементную адресации.

Микропроцессор содержит входные и выходные интерфейсные сигналы, обеспечивающие реакцию на сигналы запросов внешних прерываний, организацию прямого доступа к памяти, а также согласование своего цикла работы с медленными внешними устройствами (ВУ).

Его отличительной чертой стало создание микропроцессорного комплекта или семейства, то есть набора БИС, совместимых между собой по интерфейсным сигналам и функционально дополняющих друг друга. В нашей стране этот микропроцессорный комплект выпускался в составе серии К580, в которую вошли следующие микросхемы:

  • КР580ВМ80А - однокристальный 8-разрядный микропроцессор;
  • КР580ВВ51А - программируемый последовательный интерфейс;
  • КР580ВИ53 - программируемый таймер;
  • КР580ВВ55А - программируемый параллельный интерфейс;
  • КР580ВТ57 - контроллер прямого доступа к памяти;
  • КР580ВН59 - контроллер прерываний;
  • КР580ВВ79 - интерфейс клавиатуры и дисплея;
  • КР580ВГ75 - контроллер ЭЛТ;
  • КР580ВК91А - интерфейс МП - канал общего пользования;
  • КР580ГФ24 - генератор тактовых сигналов и некоторые другие схемы, предназначенные в основном для согласования работы отдельных частей микропроцессорной системы.

БИС данного микропроцессорного комплекта вследствие хороших архитектурных решений, широкой номенклатуры и совместимости до сих пор можно встретить в некоторых цифровых устройствах, не требующих высокого быстродействия и разрядности, а идеи, заложенные в таких схемах, как контроллер прерываний и контроллер прямого доступа к памяти, используются в современных наборах системной логики - чипсетах.

Очередным крупным шагом в развитии микропроцессорной техники стало появление в 1978 году 16-разрядных универсальных микропроцессоров. Здесь прежде всего следует выделить микропроцессор I-8086,

выпускавшийся отечественной электронной промышленностью в составе семейства К1810. Эти микропроцессоры, заложившие основы архитектуры x86, использовались при производстве первых персональных ЭВМ.

Основными отличительными чертами в архитектуре этого микропроцессора стали:

  • увеличение разрядности регистров общего назначения до 16 бит;
  • увеличение количества регистров общего назначения до 8;
  • увеличение количества режимов адресации операндов;
  • расширение количества флагов в регистре признаков, в том числе за счет введения флагов управления, обеспечивающих, например, возможность запрета внешних маскируемых прерываний;
  • появление сегментного механизма обращения к памяти, который обеспечил возможность обращения к памяти емкостью до 1 Мбайт при использовании 16-разрядных регистров.

Появившийся вслед за этим в 1982 году микропроцессор i286 явился переходной ступенью к 32-разрядным универсальным микропроцессорам. В процессоре i286 было реализовано два режима работы - защищенный и реальный. В реальном режиме работы процессор был полностью совместим с выпускавшимися ранее 16-разрядными микропроцессорами с архитектурой x86. В формировании адреса участвовали только 20 линий, поэтому максимальная емкость адресуемой памяти в этом режиме осталась прежней - 1 Мбайт. В защищенном режиме процессор мог адресовать до 1 Гбайт виртуальной памяти. Шина адреса увеличена до 24 бит, поэтому емкость адресуемой памяти составляла 16 Мбайт. Для защиты от несанкционированного доступа к программам и данным и выполнения привилегированных команд, которые могут кардинально изменить состояние всей системы, в процессоре i286 была введена защита по привилегиям. С этой целью микропроцессор поддерживал 4 уровня привилегий. Для выполнения операций над числами с плавающей точкой была разработана отдельная БИС - математический сопроцессор 80287.

В 1985 году был выпущен 32-разрядный универсальный микропроцессор i386 - первый полноценный представитель архитектуры IA-32 (Intel Architecture-32). Развитие этой архитектуры продолжалось вплоть до последних моделей микропроцессора Pentium 4. Данную архитектуру отличает ряд изменений, некоторые из которых имеют чисто количественное значение, а другие носят принципиальный характер.

Главным внешним отличием является увеличение разрядности шины данных и шины адреса до 32 бит. Это, в свою очередь, связано с изменениями в разрядности внутренних элементов микропроцессора.

Большие качественные изменения произошли на уровне работы микропроцессора в защищенном режиме, который был существенно развит по сравнению с i286. Отметим основные черты этого режима.

1. Принципиально меняется механизм формирования физического адреса. Прежде всего, изменяется механизм использования сегментированной памяти. Сегменты в защищенном режиме могут иметь произвольную длину и располагаться в памяти начиная с произвольного адреса. Каждый сегмент снабжается рядом атрибутов (базовый адрес, длина сегмента, его тип, уровень защиты и т. п.), которые хранятся в специальной структуре, называемой дескриптором сегмента, и используются блоком управления памятью микропроцессора при формировании физических адресов операндов и команд. Появляется возможность использования страничного механизмаорганизации памяти. Страница - это раздел памяти, который, в отличие от сегмента, имеет фиксированную длину. Страничная организация памяти служит основой виртуальной памяти и беспечивает более эффективное, по сравнению с сегментной, использование памяти.

2. Организуется аппаратная поддержка мультипрограммного режима работы, при котором в памяти одновременно содержатся программы и данные для выполнения нескольких задач. Каждой задаче предоставляется свой <виртуальный процессор>. В каждый момент времени реальный процессор предоставляется одному из виртуальных процессоров, выполняющему свою задачу.

3. С целью обеспечения защиты информации и упрощения организации мультипрограммного режима работы микропроцессор снабжается специальными механизмами, определяющими, какие операции и обращения к памяти разрешается производить процессору при выполнении текущей задачи.

За время, прошедшее после появления первого 32-разрядного микропроцессора, только фирмой Intel было выпущено несколько десятков модификаций 32-разрядных МП. Изменения в некоторых моделях носили принципиальный характер, а ряд моделей содержали в основном лишь количественные изменения отдельных параметров (частота, емкость кэш-памяти и т. п.). Основные этапы развития этой архитектуры, которые, на наш взгляд, носят принципиальный характер, представлены в табл. 1.1.

Таблица 1.1. Этапы развития архитектуры IA-32
Модель Год начала выпуска Число транзисторов на кристале Максимальная тактовая частота, МГц Схема обработки данных Наличие кэш-памяти на кристале Регистры Колличество команд в системе команд Колличество конвейеров/ступеней конвейера
i386 275 тыс. SISD, ФТ нет 32 разрядные с ФТ*** -
i486 1,2 млн. SISD, ФТ, ПТ да --- // --- +80-разрядные с ПТ*** --- // --- ---
Pentium 3,1 млн. --- // --- --- // --- --- // --- --- // --- 2/5
Pentium MMX 4,5 млн. --- // --- +SIMD, ФПБ --- // --- --- // --- + 57 4/14
Pentium III 9,5 млн. (28,1 млн.) * --- // --- +SIMD, П3 --- // --- +кэш L2 --- // --- +128-разрядные SSE +70 5/11
Pentium 4 42 млн. --- // --- --- // --- --- // --- +144 9/31

 

   

 

Остановимся вкратце на их рассмотрении.

К основным нововведениям микропроцессора i486, выпущенного в 1989 году, относятся два, которые связаны с расширившимися технологическими возможностями. Это размещение непосредственно на кристалле БИС двух важных блоков, которые раньше выполнялись в виде отдельных микросхем: кэш-памяти и блока процессора обработки чисел с плавающей точкой ( floating point unit - FPU ). Кэш-память имела объем 8

Кбайт и предназначалась для хранения программ и данных. FPU имел внутренний файл из восьми 80-разрядных регистров, свой регистр состояния и управления.

Главной отличительной чертой нового продукта в линейке 32-разрядных микропроцессоров - МП Pentium - явилась возможность конвейерной обработки информации. Хотя некоторые авторы считают, что конвейер появился уже в i486, это не является общепринятым мнением.

Высокая скорость выполнения команд в МП Pentium достигалась благодаря двум 5-ступенчатым конвейерам, позволявшим одновременно исполнять несколько инструкций. Обмен информацией с памятью через кэш данных осуществлялся независимо от процессорного ядра, а буфер инструкций был связан с ним через высокоскоростную 256-разрядную внутреннюю шину. Несмотря на то что новый кристалл был спроектирован как 32-разрядный, для связи с остальными компонентами системы использовалась внешняя 64-разрядная шина данных. Появление конвейера обусловило необходимость введения еще одного блока - схемы предсказания переходов. Эффективная работа данной схемы чрезвычайно важна для повышения производительности микропроцессора. Все последующие модификации микропроцессоров непременно связаны с улучшением ее работы.

Основным нововведением разработанного в 1997 году микропроцессора Pentium MMX стал блок, обеспечивавший новую схему обработки целочисленной информации -SIMD (Single Instruction - Multiple Data: одна команда - множество данных). До этого обработка велась по классической схеме SISD: каждая команда выполняла действия над своей парой операндов. Введение SIMD-операций позволило обрабатывать одновременно несколько операндов с использованием одной команды, что дало возможность существенно поднять производительность микропроцессора на тех задачах, где над большими массивами однородной информации выполнялись одинаковые операции, например, в мультимедийных приложениях. Появление таких возможностей потребовало введения в систему команд 57 новых инструкций, но регистровая структура микропроцессора не изменилась.

Микропроцессор Pentium III, появившийся в 1999 году, позволил обрабатывать по схеме SIMD не только целочисленные операнды, но и числа с плавающей точкой. Для этого система команд была расширена на 70 инструкций, а в структуре микропроцессора появился специальный блок SSE, содержащий, в частности, отдельный регистровый файл из восьми 128-разрядных регистров. Еще одной новинкой, использованной в Pentium III, было размещение на кристалле кэш-памяти второго уровня (начиная с ядра Coppermine), работающей на частоте ядра. Но это носило скорее количественный характер и не внесло существенных изменений в архитектуру.

Микропроцессор Pentium 4 завершает линейку 32-разрядных микропроцессоров. Основным вкладом этого микропроцессора в развитие архитектуры IA-32 стало еще большее увеличение глубины конвейера - до 31 стадии, что позволило сильно нарастить частоту процессора. Количество конвейеров возросло до 9. Кроме поддержки ставших традиционными инструкций MMX и SSE, в Pentium 4 добавили еще 144 команды SSE2, затем и SSE3, ориентированные в первую очередь на работу с потоковыми данными.

В 2001 году фирмой Intel был выпущен микропроцессор Itanium, положивший начало новой 64-разрядной архитектуре - IA-64, которая сменила архитектуру 32-разрядных микропроцессоров IA-32, господствовавшую на протяжении более 15 лет.

Данное учебное пособие в части универсальных микропроцессоров будет базироваться в основном на рассмотрении базовой архитектуры 32- разрядного микропроцессора, которая сложилась в микропроцессоре i486. Основные моменты, касающиеся развития этой архитектуры (конвейерная организация работы, обработка информации по схеме SIMD и т. д.), будут рассмотрены отдельно. Также отдельно будут рассмотрены современные направления развития архитектуры универсальных микропроцессоров и, в качестве примера, архитектура 80-ядерного микропроцессора фирмы Intel и микропроцессора Itanium.

– Конец работы –

Эта тема принадлежит разделу:

Основные понятия и характеристики архитектуры микропроцессоров

Микропроцессор МП это программно управляемое устройство которое предназначено для обработки цифровой информации и управления процессом этой... Понятие большая интегральная схема в настоящее время четко не определено... Микропроцессорная система МПС представляет собой функционально законченное изделие состоящее из одного или...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Этапы развития архитектуры универсальных микропроцессоров

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Структура 32-разрядного универсального микропроцессора
Рассмотрение архитектуры IA-32 начнем с микропроцессора i486. В нем впервые появились те блоки, которых не было на кристалле первого 32-разрядного микропроцессора i386, - кэш-память и процессор обр

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги