рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ ОТКРЫТЫХ СИСТЕМ

МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ ОТКРЫТЫХ СИСТЕМ - раздел Электроника, Протоколы Несколько Странным Может Показаться Введение Отдельного Параграфа В Конце Вто...

Несколько странным может показаться введение отдельного параграфа в конце второго тома для обсуждения неоднократно упоминавшейся ранее модели взаимодействия открытых систем OSI. Но, во-первых, автор давно обещал это сделать, во-вторых, этого требует специфика рассматриваемого в данной главе прото­кола Х.25, а в-третьих, книга подходит к концу, и другого случая может и не быть.

Многоуровневый комплект протоколов, известный как мо­дель взаимодействия открытых систем (OSI — Open Systems Inter­connection), разработан в 1984 году Международной организацией по стандартизации ISO совместно с Сектором стандартизации электросвязи 1TU-T, называвшимся в те времена Международным консультативным комитетом по телеграфии и телефонии (МККТТ), для обеспечения обмена данными между компьютер­ными сетями. Структура модели OSI представлена на рис. 9.1.

Применительно к системам электросвязи модель OSI служит для того, чтобы четко определить структуру множества функций, поддерживающих информационный обмен между пользователя­ми услугами системы электросвязи, которая, в общем случае, со­держит в себе сеть связи. Подход, использованный в модели OSI, предусматривает разделение этих функций на семь «слоев» (layers) или «уровней», расположенных один над другим. С точки зрения любого уровня все нижележащие уровни предоставляют ему «ус­лугу транспортировки информации», имеющую определенные ха­рактеристики. То, как реализуются нижележащие уровни, для вы­шележащих уровней не имеет значения. С другой стороны, для нижних уровней безразличны как смысл поступающей от верхних уровней информации, так и то, с какой целью она передается.

Такой подход предусматривает стандартизацию интерфейсов между смежными уровнями, благодаря чему реализация любого уровня становится независимой от того, каким образом реализу­ются остальные уровни.


Протокол Х.25 ___ _________ 257

Рис. 9.1. Структура модели OSI

Уровень 1 (или физический уровень) обеспечивает прозрачную передачу потока битов по каналу, организованному между смеж­ными узлами сети с использованием той или иной передающей среды, и формирует интерфейс с этой средой. Характеристики пе­редачи (в частности, коэффициент битовых ошибок BER) опреде­ляются свойствами этого канала и от функций уровня 1 не зависят.

Уровень 2 (или уровень звена данных) формирует двусторон­ний канал связи (то есть прямое звено связи между смежными уз­лами сети), используя для этого два предоставляемых уровнем 1 цифровых канала с противоположными направлениями передачи. Важнейшие функции уровня 2 — обнаружение и исправление оши­бок, которые могут возникнуть на уровне 1, что делает независи­мым качество услуг этого уровня от качества получаемых «снизу» услуг передачи битов.

Уровень 3 (или сетевой уровень) формирует так называемые сетевые услуги, маршрутизацию и коммутацию соединений, обес­печивающие перенос через сеть информации, которой обмениваются


258 Глава 9 ___________________________________

пользователи открытых систем, размещенных в разных (и, в общем случае, несмежных) узлах сети.

Уровень 4 (или транспортный уровень) осуществляет «сквоз­ную» (от одного конечного пользователя до другого) оптимизацию использования ресурсов (то есть сетевых услуг) с учетом типа и ха­рактера связи, избавляя своего пользователя от необходимости принимать во внимание какие бы то ни было детали, связанные с переносом информации. Этот уровень всегда оперирует со всей связью в целом, дополняя, если это требуется, функции уровня 3 в части обеспечения нужного конечным пользователям качества ус­луг.

Уровень 5 (или уровень сеанса) обеспечивает координацию («внутри» каждой связи) взаимодействия между прикладными про­цессами. Примеры возможных режимов взаимодействия, которые поддерживаются уровнем 5: дуплексный, полудуплексный или симплексный диалог.

Уровень 6 (или уровень представления) производит преобра­зование из одной формы в другую синтаксиса транспортируемых данных. Это может быть, например, преобразование ASCII в EBCDIC и обратно.

Уровень 7 (или прикладной уровень) содержит функции, свя­занные с природой прикладных процессов и необходимые для удовлетворения тех требований, которые существенны с точки зре­ния взаимодействия прикладных процессов в системах А и В (рис. 9.1), или, говоря иначе, с точки зрения доступа этих процессов к среде OSI. Так как это самый верхний уровень модели OSI, он не име­ет верхней границы.

Таким образом, функции уровней 1—3 обеспечивают транс­портировку информации из одного пункта территории в другой (возможно, более чем через одно звено, то есть с коммутацией) и потому связаны с отдельными элементами сети связи и с ее внут­ренней структурой. Функции уровней 4—7 относятся только к «сквоз­ной» связи между конечными пользователями и определены таким образом, что они не зависят от внутренней структуры сети.

Поскольку в силу тех или иных специфических особенностей разных уровней в них могут формироваться и обрабатываться ин­формационные блоки различных размеров, в большинстве уров­ней предусматриваются, в числе прочих, функции сегментации блоков данных и/или их объединения.


Протокол Х.25 259

Любой функциональный уровень, например, уровень N (или N-уровень), содержит некоторое множество функций, которые вы­полняет соответствующая аппаратно-программная, т.е. физическая, подсистема (ее удобно называть подсистемой ранга N или N-подсистемой). N-подсистема содержит в себе активные элемен­ты, которые реализуют определенные для нее функциональные воз­можности (либо все их множество, либо каждый элемент выполня­ет вполне определенную часть этого множества). В англоязычной литературе такого рода активный элемент принято называть entity, a в литературе на русском языке чаще всего используется термин логический объект.

Итак, логическим объектом уровня N (или логическим N-объ­ектом, или, если из контекста ясно, о чем идет речь, то просто N-объектом) называется множество функций, привлекаемых N-уровнем к обслуживанию конкретной связи между (N+1)-под­системами.

Процесс обмена информацией между двумя физическими сис­темами через сеть можно интерпретировать как процесс взаимодей­ствия двух открытых систем, размещенных в разных географических точках. Взаимодействие это связано с тем, что пользователям той и другой системы нужно обмениваться данными, необходимыми для выполнения тех или иных задач. Обе взаимодействующие системы имеют многоуровневую архитектуру, причем функции любого од­ного и того же уровня в той и другой системе идентичны (или, по меньшей мере, согласованы).

В подобных условиях уместно говорить о том, что на каждой фазе взаимодействия между двумя системами имеет место взаи­модействие между подсистемами одного ранга, размещенными в системе А и в системе В. При этом подсистема ранга (N+1) в сис­теме, которая инициирует данную фазу (например, в системе А), должна завязать диалог с подсистемой того же ранга (N+1) в сис­теме, привлекаемой к участию в данной фазе (например, в систе­ме В). (N+1)-подсистема, размещенная в системе В, должна, в свою очередь, поддержать продолжение диалога. Иными словами, долж­на быть организована информационная связь между подсистема­ми одного ранга, размещенными в разных системах (peer-to-peer communication).

При организации и в процессе такой связи подсистема ранга (N+1), находящаяся в системе А, обращается к услугам подсисте­мы ранга N в той же системе А. Логический (N+l)- объект системы


260 Глава 9 __________________________________

А передает к N-объекту своей системы запрос, конечная цель которого состоит в том, чтобы вызвать ответную реакцию логиче­ского (N+ 1)-объекта системы В. На пути к этой цели N-объект сис­темы А обращается к услугам (N-1)-объекта своей системы, тот, в свою очередь, — к услугам (N-2)-объекта и т.д., вплоть до логическо­го объекта уровня 1, который обеспечивает использование физиче­ской среды для передачи битов, несущих запрос от системы А к сис­теме В. Логический объект уровня 1 системы В, приняв эти биты, формирует соответствующую индикацию для логического объекта уровня 2 своей системы, тот сообщает об этом логическому объекту уровня 3 и т.д. «вверх» до тех пор, пока индикация приема запроса не достигнет логического (N+ 1)-объекта системы В.

Далее, в общем случае, происходит обратный процесс. От­клик логического (N+1)-объекта системы В передается к системе А с привлечением услуг N-объекта, затем — (N-1)-объекта и т.д. в системе В, а прием уровнем 1 системы А битов, которые доставили отклик, интерпретируется логическими объектами системы А как подтверждение системой В приема отправленного к ней запроса. Это подтверждение проходит в системе А уже понятным читателю путем «вверх», пока не достигнет отправившего запрос логическо­го (N+l)-o6beKTa.

Сказанное иллюстрирует рис. 9.2, на котором запрос, индика­ция, отклик и подтверждение фигурируют как имена сервисных примитивов.

Взаимодействие между логическими (N)-объектами двух взаимодействующих открытых систем происходит в соответствии с (М)-протоколом. Информация, обмен которой поддерживает (N)-протокол, оформляется в так называемые протокольные блоки дан­ных (N)-PDU (protocol data units).

Для передачи (N)-PDU логический (N) -объект обращается к услугам расположенного ниже (N-1)-уровня и передает к нему свои PDU в составе сервисных блоков данных (N- 1)-SDU (service data units), используя сервисные (N-1)-примитивы. Логический (N-1)-объект одной системы взаимодействует с логическим (N- 1)-объектом дру­гой системы в соответствии с (N-1) -протоколом, вводя содержимое (N-l)-SDU в протокольные блоки данных (N-l)-PDU, то есть до­полняя каждый (N-l)-SDU управляющей информацией протокола (N-l)-PCI (protocol control information). Далее, для передачи (N-1)-PDU происходит обращение к услугам (N-2)-уровня и т.д.

Сказанное иллюстрирует рис. 9.3.


Протокол Х.25 261

Рис. 9.3. Протокольные и сервисные блоки данных

– Конец работы –

Эта тема принадлежит разделу:

Протоколы

Глава... Примеры сообщений освобождения сигнального пути... сообщение LE DISCONNECT генерируется когда реше ние освободить сигнальный путь принимает станция в ре зультате...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ ОТКРЫТЫХ СИСТЕМ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПРОЦЕДУРЫ ПРОТОКОЛА ТфОП
В двух предыдущих параграфах данной главы в рамках опи­саний процессов PANS и PLES рассмотрены две основные группы процедур протокола ТфОП. В первую очередь это процедуры, связанные с п

НАЦИОНАЛЬНЫЕ СПЕЦИФИКАЦИИ ПРОТОКОЛА ТфОП
По аналогии с параграфом 4.7, посвященным протоколу DSS-1, представляется полезным отметить некоторые особенно­сти протокола ТфОП интерфейса V5, принятые в России. Россий­ские национальные специфик

ПРОТОКОЛ НАЗНАЧЕНИЯ НЕСУЩИХ КАНАЛОВ
Выбранная в качестве эпиграфа строчка итальянского поэта Филиппе Пананти полностью отражает суть протокола назначе­ния несущих каналов (ВСС — Bearer Channel Connection protocol). Возможности этого

ПРОТОКОЛ УПРАВЛЕНИЯ ТРАКТАМИ ИНТЕРФЕЙСА V5.2
Как уже отмечалось выше, интерфейс V5.2 содержит несколь­ко (до 16) цифровых трактов 2048 Кбит/с. Такое отличие от интер­фейса V5.1 требует дополнительных функций управления этими трактами, включая

ПРОТОКОЛ УПРАВЛЕНИЯ
Напомним, что из четырех рассматриваемых в этой главе протоколов первые три относятся исключительно к интерфейсу V5.2. И только этот параграф посвящен протоколу управления, яв­ляющемуся единственны

СЕТИ С КОММУТАЦИЕЙ ПАКЕТОВ Х.25
Х.25 представляет собой комплект протоколов трех нижних уровней модели OSI, разработанный МККТТ для интерфейса ме­жду терминалами пользователей и сетью с коммутацией пакетов. Протоколы Х.25 использ

АРХИТЕКТУРАПРОТОКОЛАХ.25
Архитектура Х.25 содержит три уровня, соответствующие трем нижним уровням модели OSI (рис. 9.5). На физическом уровне про­токол Х.25 определяет электрический интерфейс между DTE и DCE. Стандарты Х.

ПРИМЕНЕНИЯ ПРОТОКОЛА Х.25
Протокол Х.25 широко используется уже почти четверть века, в первую очередь, для создания всемирной сети с коммутацией пакетов. Ближе к тематике данной книги применение Х.25 в системах цен

ПРОТОКОЛЫ TCP/IP И МОДЕЛЬ OSI
В истории античных времен названы семь чудес света: еги­петские пирамиды, храм Артемиды в Эфесе, Мавзолей в Галикариасе, статуя Зевса в Олимпе, Колосс Родосский, висячие сады Семирамиды в Вавилоне

ПРОТОКОЛ УПРАВЛЕНИЯ ПЕРЕДАЧЕЙ TCP
Протокол управления передачей (TCP — Transmission Control Protocol) приблизительно соответствует транспортному уровню модели OSI, но содержит и некоторые функции сеансового уров­ня. С его помощью р

ПРОТОКОЛЫ UDF и ICMP
Протокол дейтаграмм пользователяUDP (user datagram pro­tocol) относится к протоколам без установления логического со­единения и предназначен для обмена дейтаграммами между про­цессами компьютеров,

МЕЖСЕТЕВОЙ ПРОТОКОЛ IP
Как уже подчеркивалось ранее в данной главе, протокол IP вовсе не обязателен для TCP. Протокол TCP может использовать для доставки данных почти любой протокол сетевого уровня, если тот способен обе

ПРОТОКОЛЫ НИЖНЕГО УРОВНЯ
Как уже подчеркивалось выше, «универсальность» семейст­ва TCP/IP заканчивается на сетевом уровне, а IP-адрес представ­ляет собой логическое выражение, никак не связанное с конкрет­ной физической ре

СЕТЕВЫЕ УСЛУГИ В TCP/IP
По причинам, приведенным в конце параграфа 10.1, описа­ние основных протоколов TCP/IP дано кратко, основное внимание уделено тем идеям и возможностям, которые лежат в архитектуре. Практически за пр

ПРОГНОЗЫ ПО МОТИВАМ TCP/IP
То, что произошло в мире телекоммуникаций сегодня, мож­но квалифицировать скорее как революцию, чем эволюцию, на­столько велико различие между тем, что представлял собой теле­фон вчера, и тем, как

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги