рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Химические свойства АК

Химические свойства АК - раздел Электроника, Электронные эффекты заместителей Ак - Это Гетерофункциональные Органические Соединения, Вступающие В Реакции, ...

АК - это гетерофункциональные органические соединения, вступающие в реакции, характерные для карбоксильных групп, аминогрупп, и проявляющие ряд специфических биохимических свойств.

1. Как амфолиты АК образуют соли при взаимодействии с кислотами и основаниями. [аланин с NaOH= натриевая соль аланина; с HCl= солянокислый аланин, (АК5)]

2. Реакция декарбоксилирования АК - это ферментативный процесс образования биогенных аминов из соответствующих a-АК. Декарбоксилирование происходит с участием фермента - декарбоксилазы и кофермента (KoF) - перидоксаль фосфата. [серин= этаноламин+ угл. газ, (АК7)] Этаноламин участвует в синтезе фосфолипидов.

[гистидин= гистамин+ угл. газ, (АК8)] Гистамин является медиатором аллергических реакции организма. При декарбоксилировании глутаминовой АК образуется ГАМК (гамма-аминомасляная кислота), которая является медиатором торможения нервной системы.

3. Реакция дезаминирования - эта реакция является процессом удаления аминогруппы путем окислительного, восстановительного, гидролитического или внутримолекулярного дезаминирования. В организме преобладает путь окислительного дезаминирования с участием ферментов - дегидрогеназ и кофермента - НАД+.

На первой стадии процесса осуществляется дегидрирование a-звена с образованием a-аминокислоты. На второй стадии происходит неферментативный гидролиз АК, приводящий к образованию a-кетокислоты и сопровождающийся выделением аммиака, включающегося в цикл образования мочевины. [аланин (2-аминопропанова к-та)= иминок-та (2-иминопрпановая к-та)= ПВК (2-оксопропановая к-та), (АК9)]

С помощью подобных процессов снижается уровень АК в клетке.

4. Переаминирование или трансаминирование АК - это путь синтеза необходимых АК из a-кетокислот. При этом донором аминогруппы является a-АК, находящаяся в избытке, а акцептором аминогруппа a-кетокислоты (ПВК, ЩУК,a-кетомаслянная кислота). Процесс происходит с участием фермента - трансаминазы и кофермента - передоксаль фосфата

[аланин+ ЩУК= ПВК+ аспарагиновая к-та, (АК10)]

Процесс переаминирования связывает обмен белков и углеводов в организме, он регулирует содержание АК и синтез незаменимых a-АК.

Кроме этих реакций АК способны образовывать сложные эфиры, азотацильные производные и вступать в реакции, которые не имеют аналогий в химии in vitro. К таким процессам относятся гидроксилирование фенилаланина в тирозин. (АК11)

При отсутствии необходимого фермента в организме накапливается фенилаланин, при его дезаминировании образуется токсическая кислота, накопление которой приводит к тяжелому заболеванию - фенилкетонурении.

Общим свойством a-АК является процесс поликонденсации, приводящий к образованию пептидов. В результате этой реакции формируются амидные связи по месту взаимодействию карбоксильных групп одной АК и аминогрупп другой АК. В пептидах эта связь называется пептидной связью в составе пептидной группы. [СЕР+ЦИС+АЛА =серилцистеилаланин +2воды, (АК12)

Последовательность a-АК в составе пептидов или белков определяет их первичную структуру. Если полипептид содержит менее 100 остатков АК, то его называют пептид, более - белок.

По месту пептидных связей молекулы белков гидролизуется in vivo с участием ферментов - пептидаз. Среди пептидаз выделяют:

- эндопептидазы, расщепляющие связи внутри макромолекулы;

- экзопептидазы, отщепляющие по азоту или углероду концевую АК.

В организме белки расщепляются полностью, т.к. для жизнедеятельности необходимы только свободные АК.

Гидролиз in vitro происходит в сильнокислой или сильнощелочной среде и используется для расшифровки состава белков. В настоящее время расшифрован состав 1500 белков, в том числе ферментов и гормонов.

Для высокомолекулярных пептидов и белков характерны более высокие уровни организации молекулы, в проявлении их биохимических свойств важно учитывать пространственное строение, которое определяется пространственным строением пептидной группы.

Пептидная группа относится к р,p сопряженной системе, в составе которой атомы С, О и N лежат в одной s-плоскости.

За счет образования единого делокализованного 4p-электронного облака вращение вокруг С-N связи затруднено. При этом a-углеродные звенья находятся в выгодном транс-положении. (АК13)

В 1950г. Полинг и Корн показали, что наиболее выгодной конформацией полипептидной цепи является правозакрученная a-спираль.

Основной вклад в закрепление этой конформации цепи вносят водородные связи, формирующиеся между параллельными участками пептидных групп.

Известна другая вторичная структура белка: b-структура в виде складчатого листа. Кроме водородных связей вторичная структура стабилизуется дисульфидными мостиками по месту цистеиновых остатков.

Третичная структура является более сложной пространственной организацией макромолекулы, которая стабилизируется водородной связью, дисульфидными мостиками, электростатическими взаимодействиями и силами Ван-дер-Ваальса.

По третичной структуре белки делят на:

- глобулярные - для них характерна a-спиральная структура, уложенная в пространстве в виде сферы – глобулы (пр. яичный белок, фермент - глобин в составе гемоглобина);

- фибриллярные - для них характерна b-структура. Как правило, эти белки имеют волокнистое строение и к ним относятся белки мышц, ткани - миоинозин, бетакератин волос, коллоидные соединения.

Четвертичная структура известна для некоторых белков, выполняющих важные физиологические функции. Пр. четвертичная структура глобина является пространственным образованием 4-х субъедениц, удерживающих друг около друга гидрофобными связями ориентационного характера.

Доказано, что являться переносчиком кислорода гемоглобин может только при наличии четвертичной структуры глобина.

Важнейшие a–аминокислоты

Белки являются основой и структуры, и функции живых организмов, т.к. составляют материальную основу химической деятельности клетки.

Все многообразие пептидов и белков построено из a-аминокислотных остатков, которые, объединяясь в самой различной последовательности, могут образовывать громадное количество разнообразных белков. Общее количество a-аминокислот, входящих в их состав, близко к 70. Среди них выделяют группу из 20 наиболее важных a-аминокислот, постоянно встречающихся во всех белках.

Аминокислоты играют важную роль в нормальной жизнедеятельности организма. Недостаток отдельных аминокислот ведет к нарушению процессов обмена веществ. Так, недостаток триптофана вызывает уменьшение массы тела, дефицит лизина – головокружение, тошноту, повышенную чувствительность к шуму. Недостаток гистидина сопровождается снижением концентрации гемоглобина.

В последнее время аминокислоты и их производные нашли широкое применение в лечебной практике, напр., метионин – в лечении ряда заболеваний печени, глутаминовая кислота – в лечении некоторых поражений мозга. Наконец, ряд аминокислот и продукты их метаболизма оказывают регулирующее влияние на многие физиологические функции организма.

a-аминокислоты – гетерофункциональные соединения, представляющие собой производные карбоновых кислот, у которых один водородный атом у a-углеродного звена замещен на аминогруппу (NH2).

Общая формула a-аминокислот

(AKM.1)

Где СООН – кислотная функциональная группа, NH2 – основная функциональная группа, R – радикал (вариабельный фрагмент), пунктиром обозначен общий фрагмент всех a-аминокислот [кроме пролина, в котором эта структура является частью пирролидинового цикла]; звездочкой (*) помечен асимметрический атом углерода – хиральный центр.

Для аминокислот характерна стереоизомерия. Асимметричным является a-углеродный атом, т.к. с ним связаны четыре различные химические группы, в этом случае для каждой a-аминокислоты существует две возможные конфигурации – D- и L-энантиомеры. В белках встречаются только L-изомеры a-аминокислот. Это имеет важнейшее значение для формирования пространственной структуры белков и проявления ими биологической активности. С этим непосредственно связана стереоспецифичность действия ферментов.

Как видно из общей формулы, аминокислоты отличаются друг от друга химической природой радикала (R), представляющего собой группу атомов, связанную с a-углеродным звеном и не участвующую в образовании пептидных связей при синтезе белка. Поэтому всё многообразие особенностей структуры и функции белковых тел связано с химической природой и физико-химическими свойствами радикалов a-аминокислот.

Важнейшие a-аминокислоты и характеристика их боковых цепей. Порядок: название аминокислоты; сокращенно; строение аминокислот; свойства боковой цепи.

I. Моноаминокарбоновые

Глицин (a-аминоуксусная, 2-аминоэтановая); ГЛИ; (AKM2); гидрофобная, неполярная, неионная.

Аланин (a-аминопропионовая, 2-аминопропановая); АЛА; (AKM3); гидрофобная, неполярная, неионная.

Валин (a-амино-b-метилмаслянная, 2-амино-3-метилбутановая); ВАЛ; (AKM4); гидрофобная, неполярная, неионная.

Лейцин (a-амино-g-метилвалериановая); ЛЕЙ; (AKM5); гидрофобная, неполярная, неионная.

Изолейцин (a-амино-b-метилвалериановая); ИЛЕ; (AKM6); гидрофобная, неполярная, неионная.

II. Моноаминодикарбоновые

Аспарагиновая (a-аминоянтарная, 2-аминобутандиовая); АСП; (AKM7); гидрофильная, полярная, ионная (-СН2-СОО).

Глутаминовая (a-аминоглутаровая, 2-аминопентандиовая); ГЛУ; (AKM8); гидрофильная, полярная, ионная (-СН2-СОО).

III. Диаминомонокарбоновые

Лизин (a, e-диаминокапроновая, 2,6-диамногексановая); ЛИЗ; (AKM9); гидрофильная, полярная, ионная (-СН2-NH3+).

Аргинин (a-амино-g-гуанидиновалериановая); АРГ; (AKM10); гидрофильная, полярная, ионная, [-СН2-NH-C(NH2)=NH2+].

IV. Оксиаминокислоты

Серин (a-амино-b-оксипропионовая); СЕР; (AKM11); гидрофильная, полярная, неионная.

Треонин (a-амино-b-оксимаслянная); ТРЕ; (AKM12); гидрофильная, полярная, неионная.

V. Серосодержащие

Цистеин (a-амино-b-тиопропионовая); ЦИС; (AKM13); гидрофильная, полярная, ионная (-СН2-S).

Цистин (ди-a-амино-b-тиопропионовая (производное цистеина)); ЦИС-S-S-ЦИС; (AKM14); гидрофобная, неполярная, неионная.

Метионин (a-амино-g-метилтиомаслянная); МЕТ; (AKM15); гидрофобная, неполярная, неионная.

VI. Ароматические

Фенилаланин (a-амино-b-фенилпропионовая); ФЕН; (AKM16); гидрофобная, неполярная, неионная.

Тирозин (a-амино-b-параоксифенилпропионовая); ТИР; (AKM17); гидрофильная, полярная, ионная, [-CH2-C6H4-O].

VII. Гетероциклические

Гистидин (a-амино-b-имидазолилпропионовая); ГИС; (AKM18); гидрофильная, полярная, ионная.

Триптофан (a-амино-b-индолилпропионовая); ТРИ; (AKM19); гидрофобная, неполярная, неионная.

Особое место среди гетероциклических a-аминокислот занимают пролин и его гидроксипроизводные, являющиеся иминокислотами. В них a-аминокислотный фрагмент входит только в состав пирролидинового цикла.

Пролин; ПРО; (AKM20); гидрофобная, неполярная, неионная.

Оксипролин; ОПР; (AKM21); гидрофильная, полярная, неионная.

Нуклеиновые кислоты

Нуклеиновые кислоты - это ВМС, молярная масса которых составляет от 25 тыс. до 1 млн. Нуклеиновые кислоты впервые были обнаружены в ядрах живых клеток в 1869г. Они играют важнейшую роль в переносе генетической информации в живых существах от одного поколения к другому посредством управления точным ходом биосинтеза белка в клетках.

Нуклеиновые кислоты называются полинуклеотидами; это полимеры, цепи которых состоят из мономерных единиц - мононуклеотидов. Каждый мононуклеотид является 3-х компонентным образованием. Он включает:

1. гетероциклическое азотистое основание (пуриновое или пиримидиновое) в лактатной форме;

2. углеводный остаток пентозы (рибозы или дезоксирибозы) в β-фуранозном цикле;

3. фосфатная группа - остаток Н3РО4.

В зависимости от углеводородного компонента различают:

- рибонуклеотиды, содержащие остаток рибозы (пр. структурные звенья РНК);

- дезоксирибонуклеотиды, содержащие остаток дезоксирибозы (ДНК).

– Конец работы –

Эта тема принадлежит разделу:

Электронные эффекты заместителей

Электронные эффекты заместителей... Органическая химия это химия соединений углерода которых в настоящее время... Неполярные ковалентные возникают между атомами с одинаковыми величинами электроотрицательности напр в пропане...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Химические свойства АК

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Кислотные свойства органических соединений
Большинство органических соединений можно рассматривать как кислоты, т.к. в их молекулах имеются связи атомов водорода с атомами С, О, N, S. Органические соединения классифицируют по кислотным цент

Конформации циклических углеводородов
Циклы по величине делят на: а) малые (3-4 атома углерода); б) обычные (5-7 атомов углерода); в) средние (8-10 атомов углерода); г) макроциклы (более 10 атомов уг

Восстанавливающие дисахариды
Благодаря наличию в молекулах дисахаридов этого типа полуацетального гидроксила они так же, как моносахариды, способны к таутомерным превращениям. Это проявляется в мутаротации растворов (из

Физиологически активные гетероциклические соединения, их строение и биологическая роль
Гетероциклическими соединениями называются соединения, в цикле которых кроме атомов углерода содержатся другие атомы (N, O, S), называемые гетероатомами. Обобщенно можно констатировать, что ненасыщ

Производные пиррола
(гет2) Индол (бензопиррол). Встречается в природе в виде различных соединений, обладающих биологической активностью, к их числу принадлежит входящая в состав белков аминокислота триптофан.

Состав гемоглобина
Гемоглобин эритроцитов состоит из а) гема и б) растворимого в воде белка глобина. Состав ГЕМА: 1. четыре пиррольных цикла; 2. четыре метиновых мостика (–СН=); 3.

III группа: 6-членные гетероциклы с 1 гетероатомом азота
(гет10) Пиридин. За счет атома азота пиридин проявляет основные свойства. Ядро пиридина содержится в молекулах некоторых алкалоидов - никотина, витамина "РР". (гет11) Н

Карбонильные соединения
Карбонильные соединения – это вещества, которые в своем составе содержат карбонильную группу >C=O. В зависимости от характера связанных заместителей карбонильные соединени

Альдегиды
(гидр24) В молекуле альдегидов выделяют следующие реакционные центры: 1. основной нуклеофильный центр; 2. электрофильный центр; 3. СН-кислотный центр.

Карбоновые кислоты
Карбоновые кислоты - это вещества, которые в своем составе содержат карбоксильную группу [COOH, (гидр30)] Карбоновые кислоты классифицируют по количеству карбоксиль

Химические свойства карбоновых кислот
I. Реакции диссоциации. [карб. к-та+вода= ацилат-ион+ H3O+, (гидр47)] II. Реакции галогенирования (реакции в СН-кислотном центре) [пропионовая к-та+

Медико-биологическое значение карбоновых кислот
Салициловая кислота (гидр58) и фармпрепараты на ее основе в медицинской практике используются наружно при кожных заболеваниях в качестве отвлекающего и антисептического средства. Внутрь са

Биологические функции углеводов
1. Энергетическая. Углеводы – главный вид клеточного топлива. При сгорании 1 моль глюкозы выделяется 3060 Дж энергии, которая расходуется в эндотермических биологических процессах, превращая

Циклические формы.
Образование циклических форм связано со способностью углеродной цепи принимать выгодную клешневидную конформацию и с дальнейшим взаимодействием внутри одной молекулы карбонильной группы с гидроксил

Химические свойства моносахаридов.
Исходя из функционального состава, моносахариды проявляют свойства многоатомных спиртов, карбонильных соединений, полуацеталей и специфические свойства. 1. Свойства многоатомных спиртов пр

Производные моносахаридов.
Аминосахара – образуются на основе моносахаридов, в молекулах которых OH-группа второго звена замещена аминогруппой NH2, напр. D-глюкозамин: (угл17) В водном растворе он

Сложные углеводы.
Полисахариды - это высокомолекулярные углеводы, по химической природе относящиеся к полигликозидам, т.е. продуктам поликонденсации моносахаридов, связанные между собой гликозидными связям

Кислотно-основные свойства a-АК
По протолитической теории кислот и оснований, АК относятся к амфолитам, т.к. содержат в составе молекулы кислотные и основные центры. В водном растворе молекула АК существует в виде биполярного ион

Строение нуклеотидов
Нуклеотиды - это N-гликозиды, образованные азотистым основанием и пентозой. Азотистое основание присоединяется к углеводному компоненту вместо полуацетальной ОН-группы через атом N в положении 1 дл

Строение мононуклеотидов
Нуклеотиды - это фосфаты нуклеозидов. Фосфорная кислота (Н3РО4) присоединяется к 5’ атому углерода пентозы образуя сложноэфирную связь. Пр. рассмотрим образование 5’-

Строение нуклеотидов РНК
5’-гуаниловая к-та (НК3); 5’-адениловая к-та (НК4); 5’-цитидиловая к-та (НК5); 5’-уридиловая к-та (НК6); Строение нуклеотидов ДНК 5’-тимидиловая

Структура нуклеиновых кислот
Структура ДНК Впервые структура ДНК была расшифрована в 1953г. Уотсоном и Криком. ДНК включает несколько уровней структурной оргенизации. Днк имеет первичную, вторичную

Структура РНК
В основном обладают первичной структурой, сходной со структурной ДНК, только азотистое основание урацил вместо гуанина, а углеводный компонент рибоза вместо дезоксирибозы. В зависимости от

Биологическая роль и функции жиров
1. жиры являются основными компонентами клеточных мембран; 2. участвуют в регуляции деятельности гормонов, ферментов, процессах биологического окисления, транспорта веществ. Примерно 50% м

Сложные липиды
Фосфолипиды - содержат остатки фосфорной кислоты. К ним относят производные L-фосфатидовых кислот. (лип5) главный компонент клеточной мембраны. Некоторые представители ф

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги