Нейроны

Основные функциональные элементы нервной системы - нейроны. Они отличаются от других клеток наличием отростков - дендритов и аксонов. Дендрит, это модифицированная часть нейрона, предназначенная для восприятия нервного сигнала и его проведения. Он представляет собой многократно ветвящийся отросток, отходящий от любой части нейрона, длина которого редко превышает 1 мм. Нервная клетка может иметь один и более дендритов. Дендриты образуют сложную структурную сеть, обеспечивающую коммуникацию нервных клеток и интеграцию нервной системы.

Аксон у нервной клетки только один. Это отросток, предназначенный для проведения нервного импульса от тела нервной клетки к другим клеткам. Диаметр аксона постоянен на всём его протяжении, а длина колеблется от долей миллиметра до метра.

Тела, дендриты и аксоны нервных клеток окружены клеточной мембраной, толщина которой составляет около 70 А. В мембраны нервных клеток встроены специально организованные белковые комплексы, формирующие электро- и хемовозбудимые каналы, регулирующие проницаемость мембран для ионов Na+, K+, Cl-, Ca2+. Градиент концентрации ионов между внутренней и внешней средой клетки формирует потенциал покоя возбудимой мембраны, равный примерно 90 мв (таблица 2).

Таблица 2. Распределение ионов внутри и вне возбудимых клеток (Katz, 1971). (мМ/л)

ионы мышечная клетка нервная клетка
снаружи внутри снаружи внутри
Na+ K+ Cl- 2,5 9,2 3 - 4 40 - 100

Градиенты концентраций калия и хлора примерно уравновешивают друг друга. Поэтому проницаемость мембраны для этих ионов хотя и ограничена, но относительно высока. Проницаемость натриевых каналов в покое ничтожно мала. Более того Na+ постоянно "выкачивается" за пределы нейрона с помощью энергозависимых механизмов против высокого электрохимического градиента. Таким образом, потенциал покоя представляет собой ни что иное, как готовый к использованию источник накопленной энергии, необходимой для генерации сигнала (потенциала действия). Если возбудимая мембрана деполяризуется примерно на 15 мв, электровозбудимые натриевые каналы открываются, проницаемость их для ионов резко возрастает, Na+ устремляется в клетку, разница потенциалов по обе стороны мембраны падает, а затем в течение около 0,8 мсек возвращается примерно к исходному уровню. При этом восстанавливается исходная проницаемость мембраны для натрия. Усиление проницаемости для К+ также необходимо для полной реполяризации мембраны и восстановления исходного потенциала покоя.

Распространяющаяся по аксону волна деполяризации мембраны с последующей её реполяризацией лежит в основе проведения нервного импульса.

Проведение сигнала не единственная функция аксона. По ходу нервного отростка с помощью механизмов быстрого аксонального тока (400 мм/день) и медленного тока (3 мм/день) осуществляется также транспорт белков, энзимов, предшественников нейромедиаторов. Возможен также ретроградный ток от периферии аксона к телу нервной клетки. Скорость ретроградного тока - около 200 мм/день. Энергетика и механизмы этого явления до конца не изучены. Не до конца охарактеризованы и вещества, транспортируемые по аксону. По-видимому, они имеют трофические функции; возможна их транссинаптическая передача от иннервируемых клеток. По механизму ретроградного тока, транссинаптически, в ЦНС могут поступать некоторые токсиканты (например, тетанотоксин).

Наличие отростков и системы внутриклеточного транспорта, предназначенной для перемещения питательных, физиологически активных и пластических материалов на значительные (в масштабах организма) расстояния, делает нейроны наиболее уязвимыми элементами нервной системы для действия токсикантов с различными механизмами действия.