Механизмы действия нейротоксикантов

Развивающаяся патология является следствием воздействия токсикантов на возбудимые мембраны, механизмы передачи нервного импульса в синапсах, пластический и/или энергетический (гипоксия, ишемия) обмен в нервной ткани.

Классификация наиболее известных в настоящее время высокоспецифичных нейротоксикантов, часто используемых в эксперименте для изучения явления нейротоксичности, и механизмы их действия на нервные клетки, представлена на таблице 6.

Таблица 6. Классификация "избирательных" нейротоксикантов в соответствии с механизмами их действия

1. Токсиканты, разрушающие определенные нервные клетки ЦНС - 6-гидроксидофамин: дофаминергические нейроны - 5,6-дигидрокситриптамин: серотонинергические нейроны - капсаицин: нейроны, синтезирующие субстанцию Р - 3-ацетилпиридин: нейроны олив мозга
2. Токсиканты, действующие на специфические рецепторы: А. Антагонисты: - курарин, -бунгаротоксин, эрабутоксин: Н-холинорецепторы - атропин, скополамин, хинуклединилбензилат: М-холинорецепторы - ДЛК, псилоцибин: серотонинергические рецепторы - бициклофосфаты, норборнан, пикротоксин, бикукуллин: ГАМК-рецепторы - стрихнин: глициновые рецепторы Б. Агонисты: - никотин, анабазин: Н-холинорецепторы - ФОС, карбаматы: М- и Н-холинорецепторы - каиновая кислота и её аналоги: рецепторы глютамата
3. Токсиканты, действующие на пресинаптические структуры: - ботулотоксин, кротоксин: Н-холинергические синапсы - резерпин: катехоламинергические синапсы
4. Токсиканты, действующие на натриевые каналы: А. Блокаторы проницаемости: - тетродотоксин - сакситоксин Б. Активаторы проницаемости: - аконитин - вератридин - батрахотоксин - токсины скорпионов
5. Токсины, действующие на калиевые каналы: А. Блокаторы проницаемости: - аминопиридин - новокаин и его аналоги Б. Активаторы проницаемости: - тетраэтиламмоний - пентилентетразол
6. Токсиканты, нарушающие биоэнергетику мозга: - цианиды, сульфиды - фторуксусная кислота - динитрофенол
7. Токсиканты, угнетающие аксональный транспорт: - колхицин - цитохалазин
8. Токсиканты, блокирующие митозы - метилазоксиметанол-гликозид (циказин)

Как видно из таблицы, в основе токсичности большинства известных нейротоксикантов лежит способность действовать на возбудимые мембраны и механизмы передачи нервного импульса в синапсах. Однако, последствия нарушений энергетического и пластического обмена для нервной системы также весьма пагубны.

Дефицит энергообеспечения может быть следствием первичного поражения клеток нервной системы (интоксикация цианидами, производными фторкарбоновых кислот и др.) и действия токсикантов на гемодинамику, кислородтранспортные функции крови, внешнее дыхание. В наибольшей степени нарушение энергетического обмена сказывается на состоянии нейронов, в которых высок уровень процессов потребления кислорода и синтеза макроэргов. В целом клетки малого размера с большим количеством дендритов более чувствительны к гипоксии (ишемии), чем большие нейроны с длинными аксонами и малым количеством дендритов (мотонейроны). Глиальные и эндотелиальные клетки менее чувствительны к гипоксии (ишемии) и по этому показателю распределяются следующим образом: олигодендроглия > астроциты > микроглия > эндотелий капилляров > белое вещество мозга. Среди структур, образуемых серым веществом, наиболее чувствительными к гипоксии являются: кора головного мозга (малые гранулярные клетки - 4 слой), кора мозжечка (клетки Пуркинье), гиппокамп (клетки полей Н1 и Н2).

В настоящее время интимные механизмы нейротоксичности большинства токсикантов неизвестны.