рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Предварительные замечания

Предварительные замечания - раздел Электроника, ПРЕДМЕТ И ЗАДАЧИ ТОКСИКОЛОГИИ Самым Простым Объектом, Необходимым Для Регистрации Биологического Действия Т...

Самым простым объектом, необходимым для регистрации биологического действия токсиканта, является клетка. При изучении механизмов токсического действия это положение не редко опускают, концентрируя внимание на оценке характеристик взаимодействии химического вещества с молекулами-мишенями (см. выше). Такой упрощенческий подход, оправданный на начальных этапах работы, совершенно не допустим при переходе к изучению основной закономерности токсикологии - зависимости "доза-эффект". На этом этапе необходимо изучить количественные и качественные характеристики реакции всего эффекторного аппарата биообъекта на возрастающие дозы токсиканта, и сопоставить их с закономерностями действия ксенобиотика на молекулярном уровне.

 


2.2. Основные понятия


Рецепторная концепция действия токсикантов на клетку или орган предполагает, что в его основе лежит реакция вещества с определенной биологической структурой - рецептором (см. раздел "Механизм действия"). Наиболее глубоко эти представления развивались в ходе исследований на моделях взаимодействия ксенобиотиков с селективными рецепторами эндогенных биорегуляторов (нейромедиаторов, гормонов и др.). Именно в такого рода опытах установлены базовые закономерности, лежащие в основе зависимости "доза - эффект". Общепризнанно, что процесс образования комплекса вещества с рецептором подчиняется закону действующих масс. Однако гипотетичными до настоящего времени остаются представления, позволяющие связать количественные и качественные характеристики этой первичной реакции и выраженность эффекта со стороны целостной биологической системы. Для преодоления возникающих сложностей принято выделять две токсикометрические характеристики ксенобиотика:
1. Афинность - отражает степень сродства токсиканта к рецептору данного типа;
2. Эффективность - характеризует способность веществ вызывать определенный эффект после взаимодействия с рецептором. При этом ксенобиотики, имитирующие действие эндогенного биорегулятора, называются его агонистами. Вещества, блокирующие действие агонистов, называются антагонистами.

 


2.3. Афинность


Измерение афинности токсиканта к рецептору, по сути, представляет собой экспериментальное изучение зависимости между количеством вещества, добавляемого в инкубационную среду, и количеством образующегося в результате взаимодействия токсикант-рецепторного комплекса. Обычный методический прием - радиолигандные исследования (см. выше).
При использовании закона действующих масс для определения афинности необходимо учитывать, что исследователю известны количественные характеристики содержания в среде только одного из участников процесса - токсиканта [P]. Количество рецепторов [R]T, участвующих в реакции, всегда не известно. Существуют методические приемы и допущения, позволяющие в ходе эксперимента и на этапе анализа обработки полученных результатов преодолеть эту сложность.

 


2.3.1. Описание взаимодействия "токсикант-рецептор" в соответствии с законом действующих масс


В простейшем случае для описания процесса образования комплекса вещества и рецептора применяют кинетические характеристики реакции второго порядка.


В соответствии с законом действующих масс:


KD - константа диссоциации комплекса "токсикант-рецептор".
1/KD - константа ассоциативного процесса, является мерой сродства токсиканта к рецептору.
Поскольку общее количество рецепторов в изучаемой системе (культура клеток, изолированный орган и т.д.) есть сумма свободных [R] и вступивших во взаимодействие с веществом [RP] рецепторов, то:


[R]T = [RP] + [R] (3)


С учетом уравнений (2) и (3), имеем


[RP]/[R]T = y = [P]/([P] + KD) (4)


Степень насыщения рецептора токсикантом "у" есть отношение связавшегося с веществом рецептора к общему количеству рецепторов. Поскольку количество образовавшегося комплекса [RP] может быть определено экспериментально появляется возможность рассчитать значение КD в соответствии с уравнением (4). В графическом представлении зависимость насыщения рецептора от концентрации токсиканта в среде имеет вид гиперболы, что также может быть использовано для определения значения константы диссоциации.

 


2.3.2. Более сложные модели взаимодействия "токсикант-рецептор"


Экспериментально получаемые кривые связывания токсиканта на рецепторах не редко более крутые или более пологие, чем следует ожидать, исходя из закона действующих масс. Иногда выявляются кривые со сложной зависимостью степени насыщения рецептора токсикантом от его концентрации. Эти отклонения обычно объясняют тремя обстоятельствами:
1. Реакция между веществом и рецептором не является бимолекулярной. В этом случае требуется иная форма задания зависимости, чем представленная уравнением (4):

y = [P]n/([P]n + KD) (5)


где n (константа Хила) - формально отражает число молекул токсиканта, принимающих участие в образовании одного комплекса "токсикант-рецептор".
2. Популяция рецептора, с которым взаимодействует токсикант, гетерогенна. Так, если в биологическом объекте в равных количествах содержатся два подтипа рецептора, различающихся в 3 раза величиной константы ассоциации комплекса "токсикант-рецептор", то суммарное значение константы Хила, исследуемой зависимости будет равно 0,94. При больших различиях значений констант ассоциации интегральная её величина в ещё большей степени будет отличаться от 1,0.
3. Определенное влияние на процесс образования комплекса "токсикант-рецептор" оказывают такие явления, как изменение конформации рецептора, кооперативности его отдельных субъединиц, различные аллостерические эффекты. Так, нередко кривая связывания токсиканта с рецептором имеет S-образный вид. Это свидетельствует о взаимном влиянии соседних участков связывания токсиканта с макромолекулой (например, образование комплекса с одной субъединицей рецептора приводит к изменению его сродства к другим, свободным субъединицам). Подобный эффект наблюдается при изучении связывания ацетилхолина препаратом тканевых мембран, содержащих холинорецептор. Увеличение концентрации свободного [3Н]-ацетилхолина в инкубационной среде сопровождается возрастанием афинности вещества к рецепторным протеинам (рисунок 1). Местный анестетик прилокаин при добавлении в инкубационную среду нарушает явление кооперативности рецепторов и, тем самым, ограничивает увеличение сродства к ним ацетилхолина. Об этом свидетельствует изменение формы кривой зависимости "связывание - концентрация токсиканта" и превращение её из S-образной в обычную гиперболическую.

Рисунок 1. Влияние прилокаина на процесс связывания ацетилхолина с холинорацептором (J.B. Cohen et al., 1974)

 


2.4. Эффективность


В многочисленных опытах показано, что между способностью вещества образовывать комплекс с рецептором определенного вида и выраженностью формирующегося при этом биологического эффекта (например, сокращение гладкомышечных волокон стенки кишечника, изменение сердечного ритма, выделение секрета железой и т.д.) далеко не всегда прослеживается прямая зависимость. Для описания результатов экспериментальных исследований, в которых эта зависимость изучалась, предложен ряд теорий.
Как указывалось ранее, все токсиканты, взаимодействующие с рецептором условно могут быть подразделены на агонисты и антагонисты. В этой связи ниже, при обозначении концентрации токсиканта в среде, будут использоваться соответственно символы: [А] - концентрация агониста; [В] - концентрация антагониста.

 


2.4.1. Оккупационные теории


Самая первая из предложенных теорий принадлежала Кларку (1926), который предположил, что выраженность наблюдаемого эффекта линейно связана с количеством рецепторов, оккупированных токсикантом ([RP]/[R]).
Как следует из уравнения (4)

[RA]/[R]T = [A]/([A] + KA) = EA/EM (6)


где ЕА - выраженность эффекта от действия агониста в примененной концентрации;
ЕМ - максимально возможный эффект со стороны исследуемой биологической системы;
КА - константа диссоциации комплекса "агонист-рецептор".
Согласно теории Кларка 50% выраженности эффект развивается при такой дозе агониста, при которой оккупировано 50% рецепторов ([А]50). Эта доза вещества называется среднеэффективной (ЕД50).
Аналогично, в соответствии с законом действия масс, с рецептором взаимодействует и антагонист, не вызывая при этом эффекта

КВ = [В][R]/[ВR] (8)


где КВ - константа диссоциации комплекса "рецептор-антагонист".
Если агонист и антагонист действуют на рецептор одновременно, то, естественно, количество рецепторов, способных связаться с агонистом понижается. Общее количество рецепторов в биообъекте может быть обозначено как

[R]T = [R] + [RA] + [RB] (9)


В соответствии с рассматриваемой теорией токсикант может быть либо агонистом, либо антагонистом. Однако результаты многочисленных исследований указывают на то, что подобная классификация веществ оказывается недостаточной для описания наблюдаемых эффектов. Так установлено, что максимальный эффект, вызываемый различными агонистами, действующими на одну и туже рецепторную систему, не одинаков.
Для преодоления этого противоречия Стефенсоном (1956) были предложены три допущения:
- максимальный эффект может быть вызван агонистом даже в том случае, если оккупирована лишь незначительная часть рецепторов;
- развивающийся эффект не линейно связан с количеством оккупированных рецепторов;
- токсиканты обладают неодинаковой эффективностью (относительной возбуждающей активностью), т.е. способностью вызывать эффект, взаимодействуя с рецептором. Следовательно, вещества с различной эффективностью для того, чтобы вызвать одинаковый по выраженности эффект, должны оккупировать различное количество рецепторов.
В соответствии с этими представлениями сила эффекта зависит не только от числа занятых рецепторов, но и от величины некоего стимула "S", формирующегося при образовании комплекса "токсикант-рецептор":

ЕАМ = (S) = (e[RA]/[R]T) = (eyA) (10)

где е - безразмерная величина, характеризующая эффективность агониста. По Стефенсону - это мера способности токсиканта вызывать эффект, при образовании комплекса с рецептором. Количественно Стефенсон определил е = 1, при условии, что максимальный эффект от действия вещества на биосистему составляет 50% от теоретически возможной ответной реакции этой биосистемы на возбуждающий стимул.
Фурхготт (1964) предположил, что значение "е" прямо зависит от общей концентрации рецепторов в биологической системе [R]Т, и ввел дополнительное понятие "внутренняя эффективность" вещества (), величина которой обратно пропорциональна концентрации рецепторов в системе

= е/[R]Т (11)

Как следует из уравнения (10)

ЕАМ = ([R]ТуА) (12)

Подстановка выражения (6) в уравнение (12) приводит к

ЕАМ = (е[А]/([А] + К)) (13)

Если концентрация готовых к взаимодействию с агонистом рецепторов уменьшается в q раз (при необратимой блокаде рецепторов антагонистом), то реальная эффективность изучаемого вещества становится равной qе, тогда уравнение (13) принимает вид

ЕА*М* = (qe[A*]/([A*] + K)) (14)

Данная закономерность графически представлена на рисунке 2.

Рисунок 2. Действие гистамина на препарат тонкой кишки морской свинки в условиях возрастающей блокады рецепторов дибенамином (ЕД50 = 0,24мкМ; КА = 10мкМ; е = 21) (R.F. Furchgott, 1966)

Еще одна концепция, позволяющая описать зависимость между действующей концентрацией вещества и выраженностью развивающегося эффекта, предложена Ариенсом (1954). Автор предлагает характеризовать исследуемое вещество величиной, обозначаемой как "внутренняя активность" (Е)

(Е) = ЕА.MAX/EM (15)


Поскольку теоретически возможный максимальный эффект можно определить в эксперименте лишь при использовании сильного агониста, обычно значение Е для большинства веществ лежит в интервале 0< Е <1. Для полного агониста Е = 1, Е антагониста равна 0.
Таким образом, максимально возможный биологический эффект может развиться при оккупации токсикантом части рецепторов. В этом случае необратимое связывание некоторого количества рецепторов должно приводить лишь к смещению кривой "доза-эффект" вправо, без снижения величины максимального эффекта. Только при переходе определенной границы связывания рецепторов с антагонистом начинает снижаться и величина максимального эффекта.
Обычно в ходе исследований зависимости "доза-эффект" с позиций оккупационных теорий для характеристики токсикантов определяют следующие параметры:
1. КА - константу ассоциации комплекса "агонист-рецептор" (рКА = -lgКА). Так как значение этой величины часто оценивают непрямым методом (т.е не по количеству образовавшегося комплекса "токсикант-рецептор", а по величине развившегося эффекта при добавлении в среду определенного количества токсиканта) на основании концепции "стимулов", лучше говорить о "кажущейся" константе ассоциации.
2. ЕС50 или ЕД50 - такие концентрации или дозы токсиканта, при действии которых формируется ответная реакция биологического объекта равная по интенсивности 50% от максимально возможной (рД2 = -lgЕД50).
3. КВ - константу диссоциации комплекса "рецептор-антагонист". Сила действия конкурентного антагониста может быть выражена лишь с помощью одного параметра - сродства к рецептору. Этот параметр оценивается при обязательном внесении в инкубационную среду агониста.

 


2.4.2. Теория "скорости взаимодействия"


Для объяснения данных, выявляемых в процессе изучения зависимости "доза-эффект", которые не могут быть поняты с позиций оккупационной теории, Пэтоном (1961) была предложена теория "скорости взаимодействия".
Пэтон предположил, что выраженность ответной реакции биологической системы на действие вещества определяется не только числом оккупированных им рецепторов, но и скоростью, с которой вещество вступает во взаимодействие с рецептором, а затем отсоединяется от него. Автором было использовано такое сравнение: рецептор, это не клавиша органа, на которую чем дольше нажимаешь, тем дольше извлекаешь звук, но это клавиша фортепиано - здесь звук извлекается в момент удара, а затем, даже если долго держишь клавишу нажатой, звук все равно затухает.
В соответствии с теорией Пэтона, сильные агонисты - это вещества, быстро оккупирующие и быстро покидающие рецептор; антагонисты - это вещества, на долго связывающие рецептор.

 


2.4.3. Теории конформационных изменений рецептора


Для многих веществ кривая "доза-эффект" существенно отклоняется от гиперболической функциональной зависимости. Коэффициент Хила для этих кривых не равен 1 (см. выше). Как уже указывалось, эти особенности, а также S-образный характер кривых "доза-эффект" иногда может быть объяснен явлением кооперативного взаимодействия рецепторных белков. Показано также, что многочисленные химические модификаторы рецепторов (например дитиотреитол - восстановитель сульфгидрильных групп), необратимые блокаторы холинорецепторов (например -галогеналкиламины), другие антихолинергические препараты (атропин), конкурентные миорелаксанты, местные анестетики и многие другие вещества, изменяют вид кривой "доза-эффект" для агонистов, превращая её из S-образной в гиперболическую.

Для объяснения этих и других феноменов, трудно интерпретируемых с позиций оккупационных теорий (сенсибилизация и десенсибилизация рецепторов при действии агонистов), Катцем и Теслефом еще в 1957 году, на примере изучения действия миорелаксантов, была выдвинута циклическая (конформационная) модель взаимодействия токсиканта с рецептором.
В основе модели лежит представление, согласно которому как рецептор [R], так и комплекс "токсикант-рецептор" [RP] могут находиться в активном (RA, RPA) и неактивном состоянии (RI, RPI). Схематически это представлено на рисунке 3.


Рисунок 3. Схема взаимодействия токсиканта с рецептором в соответствии с моделью Катца - Теслефа.

Эта модель позволяет объяснить действие на рецептор агонистов и конкурентных антагонистов.
Агонист, например ацетилхолин, взаимодействует с RA, поскольку имеет более высокое сродство к RA, чем к RI , при этом образуется комплекс RPA. Равновесие между RPA и RPI сдвинуто в сторону RPA, так как RI имеет низкое сродство к агонисту, а комплекс RPI диссоциирует с образованием свободного RI. Развитие эффекта формируется на этапе конформационного превращения RPA в RPI. Интенсивность стимула, возникающего в биологической системе, зависит от количества таких превращений в единицу времени. Конкурентные антагонисты, например d-тубокурарин, имеют большее сродство к RA и снижают эффект агониста, выключая часть рецепторов из процесса взаимодействия с последним.
Основываясь на этой модели, практически не возможно экспериментально определить значение соответствующих констант превращений или внутреннюю активность агонистов. Поэтому до настоящего времени в эксперименте по-прежнему широко используют оккупационные модели.

 


3. Зависимость "доза-эффект" на уровне организма


3.1. Предварительные замечания


Биологическими системами, в отношении которых в токсикологии изучается зависимость "доза-эффект" являются ткани, органы, целостный организм. Чувствительность различных органов и систем организма к токсиканту не одинакова. Вот почему этот этап исследований необходим для развернутой характеристики токсичности исследуемого вещества.
Изучение изолированных органов в искусственных условиях, моделирующих естественную среду, имеют большое значение для выяснения механизмов взаимодействия токсиканта и организма. Описанные выше теории рецепторного действия токсикантов сформулированы, в основном, на основе данных, полученных в опытах именно на изолированных органах. Не удивительно, что и в настоящее время исследования на этих объектах занимают важное место в токсикологии.

 


3.2. Кривая "доза-эффект"


В общем виде можно предположить, что кривая "доза-эффект" агониста в полулогарифмических координатах (логарифм дозы - выраженность эффекта) принимает S-образную форму не зависимо от целого ряда качественных и количественных особенностей оцениваемой функции. Метод, с помощью которого изучается зависимость, то ли постепенное добавление токсиканта в инкубат, то ли однократное действие вещества на биообъект в возрастающих концентрациях, не оказывают существенного влияния на результат, если эффект не оценивается в абсолютных значениях, а выражается в процентах от максимально возможного (100%). Применение относительных величин целесообразно хотя бы потому, что любой биологический препарат, при самом тщательном приготовлении, уникален во всех своих свойствах, в том числе и по чувствительности к химическим веществам. Кроме того, в ходе эксперимента реакционная способность препарата падает. Эти обстоятельства и предполагают обязательную стандартизацию объекта перед исследованием. Графическое представление кривой "доза-эффект" токсиканта Р в сравнении с кривой для некоего стандартного вещества дает всю необходимую информацию о действии Р, включая его токсикометрические характеристики.
Поскольку непосредственное сравнение кривых, получаемых в ходе эксперимента, осуществлять технически сложно, чаще сравнивают важнейшие параметры кривых.

 


3.2.1. Среднеэффективная доза (ЕД50)


Основным параметром зависимости "доза-эффект" для определенного токсиканта и биологического объекта является величина среднеэффективной дозы (ЕД50), т.е. такая доза вещества, при действии которой на объект развивается эффект, равный 50% от максимально возможного. При работе на изолированных органах обычно используют величину ЕС50 (среднеэффективная концентрация вещества в пробе). Эффективные дозы обычно измеряют в единицах массы токсиканта на единицу массы биологического объекта (например, мг/кг); эффективные концентрации - в единицах массы токсиканта на единицу объема используемой среды (например, г/литр; М/литр). Вместо величины ЕД50 иногда используют её отрицательный логарифм: -log ED50 = pD2 (таблица 3).

Таблица 3. Величины рД2 для некоторых токсикантов, полученных в эксперименте на изолированном органе (оцениваемый эффект - сокращение мышечных волокон препарата) (J.M. Van Rossumm, 1966)

Вещество Изолированный орган рД2
ацетилхолин ареколин пилокарпин кишка крысы - ,, - - ,, - 6,5 6,3 4,8

 


3.2.2. Относительная активность


Другим параметром зависимости "доза-эффект" является относительная активность токсиканта, величина, определяемая как отношение эффекта, вызываемого токсикантом в данной дозе, к максимально возможному эффекту, развивающемуся при действии на биосистему. Это характеристика определяется, как указывалось выше, величиной внутренней активности вещества (Е).
В узком смысле слова это понятие описывает феномен различия свойств агонистов, с учетом четко очерченных представлений о механизме их токсического действия. Однако в настоящее время его не редко трактуют в расширенном смысле, как показатель сравнения активности веществ, обладающих определенными свойствами, без учета механизмов, посредством которых они инициируют наблюдаемый эффект. На рисунке 4 представлены кривые "доза-эффект" серии веществ, различающихся значением величин Е и, соответственно, ЕД50, действующих на парасимпатический отдел вегетативной нервной системы.

Рисунок 4. Кривые "доза-эффект" серии парасимпатомиметиков (0 < Е < 1,0), полученные на препарате изолированной тонкой кишки крысы. (J.M. Van Rossumm, 1966)

 


3.3. Биологическая изменчивость


Уже указывалось, что на одном и том же биологическом объекте можно поставить ограниченное количество токсикологических экспериментов (в простейших случаях - ввести животному дозу вещества; добавить в инкубационную среду, содержащую изолированный орган, вещество в возрастающей концентрации и т.д.). Поиск зависимости "доза-эффект" для одного, и тем более, нескольких токсикантов требует постановки множества экспериментов, что предполагает использование большого количества биологических объектов. В этой связи исследователь сталкивается с явлением биологической изменчивости. Даже при тщательном отборе встречаются объекты, как чрезвычайно чувствительные, так и малочувствительные к действию химических веществ, что приводит к известной вариабельности получаемых результатов. Необходимо иметь в виду, что способ учета этого феномена в ходе анализа экспериментальных данных часто оказывает влияние на итоговые значения изучаемых характеристик токсикантов.
В основе учета феномена биологической изменчивости лежит метод усреднения полученных данных. При установлении величины ЕД50, оказывается безразличным проведено ли усреднение доз, вызывающих одинаковый эффект на нескольких биообъектах, либо значений эффектов, полученных при действии определенных доз токсиканта (рисунок 5). Если же поставлена задача получить результирующую кривую "доза-эффект", то усреднению подлежат только дозы, вызывающие со стороны биообъекта эффекты определенной выраженности. При ином подходе (усреднение эффектов) наблюдается существенное снижение крутизны итоговой кривой "доза-эффект" в сравнении исходными данными.

Рисунок 5. Построение усредненной кривой доза-эффект с использованием данных, полученных на нескольких биопрепаратах с различной чувствительностью к исследуемому токсиканту. Использование метода усреднения доз, вызывающих одинаковые эффекты (А) дает правильный результат. Метод усреднения эффектов (В) приводит к "уплощенной" результирующей кривой.

 


3.4. Совместное действие нескольких токсикантов на биообъект


При совместном действии на биообъект агонистов и антагонистов возможны различные модификации зависимости "доза-эффект" (не связанные с различного рода химическими и физико-химическими взаимодействиями ксенобиотиков). Наиболее часто регистрируются такие изменения как:
- параллельный сдвиг кривой "доза-эффект";
- снижение максимальных значений кривой "доза-эффект";
- параллельный сдвиг с одновременным снижением максимальных значений.
В настоящее время для объяснения наблюдаемых эффектов наиболее часто применяют представления оккупационной теории взаимодействия "токсикант-рецептор".

 


3.4.1. Параллельный сдвиг кривой "доза-эффект"


Главное и наиболее часто используемое объяснение параллельного сдвига кривой "доза-эффект" для вещества (А) при одновременном действии на биопрепарат (внесение в инкубационную среду) вещества (В) с внутренней активностью Е = 0, базируется на допущении, что (В) является конкурентным антагонистом (А).
При сравнении на основе оккупационной теории равноэффективных концентраций агониста в отсутствии ([А]) и при добавлении антагониста ([А*]) в определенной концентрации [В], имеем

[А*]/[А] = 1 + [В]/КВ (16)

Поскольку координаты, в которых регистрируются эффекты, и наблюдается параллельный сдвиг, полулогарифмические, при логарифмировании обеих частей уравнения (16) имеем

log[A*] - log[A] = log(1 + [B]/KB) = S (17)


или

-logKB = log([A*]/[A] - 1) - log[B] (18)


Из уравнения (17) видно, что величина сдвига кривой (S) зависит только от концентрации [В] и величины константы диссоциации комплекса антагонист-рецептор КВ (рисунок 6). Соотношение между величиной стимула, вызываемого агонистом, и эффектом со стороны биосистемы не играет никакой роли. Часто для характеристики сродства антагониста к рецептору используют величину рА2 = -logКВ.
Из уравнений (16) и (17) следует, что рА2 численно равна отрицательному десятичному логарифму концентрации конкурентного антагониста, при которой необходимо удвоить содержание в среде агониста чтобы получить эффект, регистрируемый в отсутствии антагониста.

Рисунок 6. Теоретические кривые доза-эффект для агониста при отсутствии (А) и наличии (А*) в инкубационной среде антагониста в определенной концентрации [В]. В приведенном примере сдвиг S равен 1,3 и определяется как S = log[A*] - log[A]. Исходя из того, что S = log(1 + [B]/KD), КВ может быть определено экспериментально.

 


3.4.2. Снижение максимальных значений кривой "доза-эффект"

 

В ряде случаев при изучении зависимости "доза-эффект" для агониста (А*) в присутствии антагониста выявляется, что максимальный наблюдаемый эффект существенно слабее, чем наблюдавшийся от действия того же вещества в отсутствии антагониста (А). Это снижение максимального эффекта, которое может быть оценено в процентах, с позиции оккупационной теории трактуется следующим образом.
Неконкурентный антагонист (В*) реагирует с рецептором (R*) биосистемы, не являющимся рецептором R для агониста (А), при этом образование комплекса [R*B*] приводит к понижению эффективности комплекса [RA] понижается. Это приводит к некоему кажущемуся снижению внутренней активности Е агониста, зависящему от [В*].
Снижение максимальных значений кривой "доза-эффект" может быть объяснено и необратимым ингибированием рецептора для агониста конкурентным антагонистом (В).
Для количественной характеристики активности неконкурентного антагониста используют величину отрицательного логарифма константы диссоциации комплекса антагонист-рецептор

-logKB* = pD*2


Для расчета этой величины необходимо экспериментально определить максимально возможное снижение эффекта агониста в присутствии насыщающей концентрации антагониста (ЕАВ*М). Тогда

pD*2 = -log[B*] - log[(ЕАВ*М - ЕА)/(ЕАВ* - ЕА) - 1] (21)

С учетом (21) рD2 можно рассматривать как отрицательный логарифм концентрации неконкурентного антагониста, при которой эффект агониста снижается на половину максимально достижимого уровня. В этом случае (ЕАВ*М - ЕА)/(ЕАВ* - ЕА) = 2. Обычно для упрощения расчетов вместо эффекта ЕА используют максимальные эффекты, развивающиеся при действии А в разных условиях: ЕАМ, ЕАМВ, ЕАМВМ.
Если с помощью неконкурентного антагониста возможно полностью заблокировать эффект агониста, то величину рD*2 можно рассчитать по более простой формуле

pD*2 = -log[B*] + log(EA/EAB* -1) (22)



3.4.3. Параллельный сдвиг с одновременным снижением максимальных значений

На практике чрезвычайно редко приходится сталкиваться с веществами (антагонистами), вызывающими либо только параллельный сдвиг, либо только снижение максимальных значений кривой "доза-эффект" для агониста. Как правило, выявляются оба эффекта. В этой связи становиться понятным, что деление многих ксенобиотиков на группы конкурентных и неконкурентных антагонистов ряда рецепторов носит во многом механистический характер. Тем не менее и в данном случае имеется необходимость количественной характеристики действия вещества.
рD2 рассчитывается в соответствии с уравнением (22), в которое вместо значений эффектов ЕА и ЕАВ подставляют значения ЕАМ и ЕАМВ (рисунок 7).

Рисунок 7. Теоретические кривые зависимости относительной эффективности агониста [А] от его концентрации в присутствии в инкубационной среде антагониста [В]. Для расчета величины рД2 следует использовать отношение условно равноэффективных доз [А] и [А*], после определения соответствующих ЕАМ и ЕАМВ*. Расчет осуществляется в соответствии с уравнением (23), после подтверждения факта, что неконкурентный антагонист является полным.

 


3.5. Определение кажущихся констант диссоциации комплекса "агонист-рецептор"


В то время, как прямая связь между значениями величин рА2 и рD*2 антагонистов с одной стороны и констант диссоциации комплекса антагонист-рецептор с другой признается хотя бы теоретически, связь между рD2 и КА агониста таковой, в строгом смысле не является, поскольку между этапом образования комплекса "агонист-рецептор" и этапом формирования эффекта лежит цепь промежуточных звеньев биохимических и физиологических реакций, как правило далеко не изученных (см. выше). Из этого следует, что непосредственно определить сродство токсиканта к рецептору (т.е. величину константы диссоциации комплекса "токсикант-рецептор") исходя из зависимости "доза-эффект", выстраиваемой в процессе эксперимента, не возможно. Для преодоления этой сложности предлагается определять величину кажущейся константы диссоциации. Классическим является метод с использованием необратимого конкурентного антагониста.
В 1956 году Nickerson установил, что алкилирующие соединения типа -галогеналкиламинов, например дибенамин и феноксибензамин, могут вступать в необратимое взаимодействие с рецепторами различных типов. Связываются рецепторы к ацетилхолину, гистамину, серотонину, -адренорецепторам. Изучая совместное взаимодействие ингибиторов и агонистов с биопрепаратами, удалось:
- установить специфический характер действия галогеналкиламинов на агонист-связывающую область рецепторов;
- уточнить классификацию рецепторов в соответствии с их сродством к эндогенным агонистам.
Furchgott предложил метод, основанный на сравнении эквиэффективных доз агониста, действующего на интактный биопрепарат и препарат, обработанный предварительно ингибитором рецепторов (уменьшение [R]T на величину q[R]T).
Эффект, связанный с действием агониста до блокады рецепторов описывается уравнением (13), после блокады - уравнением (14). Одинаковый по выраженности эффект в этих условиях развивается при одинаковой величине стимула S. Если S = S*, то ЕАМ = ЕА*М*, и тогда, комбинируя уравнения 13 и 14, получаем

1/[A] = 1/q 1/[A] + (1-q)/qKA (23)

Выстраивая зависимость в координатах 1/[А] и 1/[А*] получаем прямую с углом наклона 1/q и отрезок на оси 1/[А], равный (1-q)/qKA. Для практического определения КА можно использовать выражение

KA = (наклон - 1)/отрезок

Процесс подготовки данных представлен на рисунке 8:

Рисунок 8. Определение величины кажущейся константы диссоциации агонистов на мускариночувствительный рецептор продольной мышцы тонкой кишки морской свинки.
а). Кривая зависимости доза-эффект ацетилхолина для интактного препарата (q = 1), и препарата, обработанного в течение 20 минут фенокисбензамином (5мкМ) (q = 0,1624).
б). Построение графика соотношения равноэффективных доз для интактного и обработанного препарата в координатах 1/[А] и 1/[А*] приводит к прямой, на основе которой (а также уравнения 23) можно вычислить значения константы диссоциации.

 


4. Зависимость "доза-эффект" в группе


4.1. Зависимость "доза-эффект" для одного токсиканта


При изучении зависимости "доза-эффект" в группе, состоящей из большого количества особей, можно исходить из представлений, развитых при изучении зависимости на уровне отдельного организма. Дополнительным фактором, влияющим на получаемый результат, является индивидуальная изменчивость.
Однако хотя реакция отдельных людей или животных в группе на токсикант не одинакова, по мере увеличения действующей дозы тем не менее будет увеличиваться и выраженность эффекта и количество индивидов (особей), у которых развивается оцениваемый эффект. Например, если на кожу испытуемых апплицировать вещество, вызывающее раздражение (ирритант), то по мере увеличения количества наносимого токсиканта будут отмечаться: - увеличение числа испытуемых, у которых разовьется реакция раздражения; - увеличится выраженность явления раздражения у испытуемых. Из этого следует, что получаемые в ходе работы величины должны определяться с учетом статистических закономерностей.
При изучении действия токсиканта на организм следует различать эффекты, выраженность которых градуально зависит от действующей дозы (например, понижение артериального давления) и эффекты типа "все или ничего" (пал/выжил). При этом следует учитывать, что эффекты первого типа можно практически всегда преобразовать в форму, пригодную для оценки эффектов второго типа. Для определения зависимости "доза-эффект" в группе обычно прибегают к двум типам построения эксперимента:
- с образованием подгрупп исследуемых животных;
- без образования подгрупп.

 


4.1.1. Анализ зависимости "доза-эффект" методом формирования подгрупп


Наиболее распространенный способ определения зависимости "доза-эффект" в группе состоит в формировании в этой группе подгрупп. Животным, входящим в подгруппу токсикант вводят в одинаковой дозе, а в каждой последующей подгруппе доза увеличивается. Формирование подгрупп должно осуществляться методом случайных выборок. С увеличением дозы будет увеличиваться часть животных в каждой из подгрупп, у которых развился оцениваемый эффект. Получаемую при этом зависимость можно представить в виде кумулятивной кривой частот распределения, где количество животных с положительной реакцией на токсикант (часть общего количества животных в подгруппе) является функцией дозы (рис. 9)

Рисунок 9. Типичная кривая доза - эффект для группы животных, симметричная относительно средней точки (50% ответ). Основные значения ответа группы на токсикант сосредоточены вокруг среднего значения.

В большинстве случаев график представляет собой S-образную кривую log-нормального распределения, симметричную относительно средней точки. Можно выделить ряд важных характеристик этой кривой, которые целесообразно учитывать при интерпретации получаемых результатов.
1. Центральная точка кривой (значение 50% ответа) или средняя эффективная доза (ЕД50) - удобный способ характеристики токсичности вещества. Если оцениваемый эффект - летальность животных в группе, эта точка обозначается, как среднесмертельная доза (см. ниже). Эта величина является наиболее точной количественной характеристикой токсичности, поскольку значение 95% доверительного интервала здесь минимальны.
2. Чувствительность большинства животных в популяции близка среднему значению. Интервал доз, включающий основную часть кривой вокруг центральной точки, иногда обозначается как "потенция" препарата.
3. Небольшая часть популяции в левой части кривой "доза-эффект" реагирует на малые дозы токсиканта. Это группа сверхчувствительных или гиперреактивных особей. Другая часть популяции в правой части кривой реагирует лишь на очень большие дозы токсиканта. Это малочувствительные, гипореактивные или резистентные особи.
4. Наклон кривой "доза-эффект", особенно в близи среднего значения, характеризует разброс доз, вызывающих эффект. Эта величина указывает, как велико будет изменение реакции популяции на действие токсиканта с изменением действующей дозы. Крутой наклон указывает на то, что большая часть популяции будет реагировать на токсикант примерно одинаково в узком диапазоне доз, в то время как пологий наклон свидетельствует о существенных различиях в чувствительности особей к токсиканту.
Форма кривой и её экстремальные точки зависят от целого ряда внешних и внутренних факторов, таких как состояние механизмов репарации повреждений, обратимость вызываемых эффектов и т.д. Так, токсический процесс может не развиваться до тех пор пока не истощатся механизмы защиты организма от действующего токсиканта, не наступит насыщение процессов биохимической детоксикации. Точно также насыщение процессов образования токсичных метаболитов из исходного ксенобиотика может явиться причиной выхода кривой "доза-эффект" на плато.
Важным вариантом кривой "доза-эффект" является зависимость, прослеживаемая в генетически гетерогенной группе. Так, в популяции с необычайно высоким количеством особей, у которых генетически закреплена повышенная чувствительность к токсиканту, возможно зарегистрировать в левой части кривой отклонения от типичной S-образной формы (Рис. 10).

доза

Рисунок 10. Вариант кумулятивной кривой "доза-эффект" с выраженным гиперреактивным компонентом

Кривая "доза-эффект" часто преобразуется в линейную зависимость путем её построения в координатах log - пробит (доза токсиканта представляется в логарифмах, выраженность ответной реакции - в пробитах). Это преобразование позволяет исследователю подвергнуть результаты математическому анализу (например, рассчитать доверительный интервал, крутизну наклона кривой и т.д.) (рис. 11).

Рисунок 11. Преобразование экспериментальных данных определения зависимости "ДОЗА - ЭФФЕКТ": а) зависимость "ЭФФЕКТ - ДОЗА"; б) зависимость "ЭФФЕКТ - log ДОЗЫ"; в) зависимость "ПРОБИТ ЭФФЕКТА - log ДОЗЫ".

Методом формирования подгрупп можно определить зависимость выраженности оцениваемого эффекта (например, степень падения артериального давления, снижения двигательной активности и т.д.) от действующей дозы токсикант. В этом случае, на основе полученных данных определяют среднюю величину эффекта, развившегося в подгруппе испытуемых на вещество в веденной дозе, и определяют доверительный интервал показателя в каждой точке. Затем строят график зависимости величины эффекта от введенной дозы, путем нахождения аппроксимационной кривой через "облако" точек (рисунок 12).

Рисунок 12. Кривая "доза-эффект" для оценки обездвиживающего действия нейролептика пимозида при внутрибрюшинном введении крысам. Каждая точка на графике получена путем регистрации эффектов, полученных у 10 - 20 животных.

 


4.1.2. Анализ зависимости "доза-эффект" без формирования подгрупп

 

При изучении действия быстро распределяющихся, но медленно выводящихся из организма веществ можно обеспечить их постепенное внутривенное введение лабораторному животному, до наступления вполне определенного по выраженности токсического эффекта (например, снижение частоты дыхания на 40%). Таким образом, появляется возможность для каждого отдельного организма определить дозу вещества, вызывающую желаемый эффект. Исследование проводится на достаточно большой группе животных. Если построить график зависимости числа животных, у которых эффект развился от величины использованных доз, то получим уже известную S-образную кривую, анализ которой осуществляется по общим правилам.

 


4.1.3. Зависимость "доза-эффект" по показателю летальность


4.1.3.1. Общие представления


Поскольку смертельный исход после действия токсиканта - альтернативная реакция, реализующаяся по принципу "все или ничего", этот эффект считают наиболее удобным для определения токсичности веществ, его используют для определения величины среднесмертельной дозы (ЛД50).
Определение острой токсичности по показателю "летальность" проводится методом формирования подгрупп (см. выше). Введение токсиканта осуществляется одним из возможных способов (энтерально, парентерально) при контролируемых условиях. При этом необходимо учитывать, что способ введения вещества самым существенным образом сказывается на величине токсичности (таблица 4).

Таблица 4. Влияние способа введения на токсичность зарина и атропина для лабораторных животных

Токсикант Животное Способ введения Смертельная доза (мг/кг)
Зарин Крысы Подкожно Внутримышечно Внутривенно через рот 0,12 0,17 0,05 0,6
Атропин Мыши Внутривенно через рот 800 90

Используются животные одного пола, возраста, веса, содержащихся на определенной диете, при необходимых условиях размещения, температуре, влажности и т.д. Исследования повторяют на нескольких видах лабораторных животных. После введения тестируемого химического соединения проводят наблюдения, определяя количество павших животных, как правило за период 14 суток. В случае нанесения вещества на кожу, совершенно необходимо регистрировать время контакта, а также оговаривать условия аппликации (из замкнутого или открытого пространства осуществлялось воздействие). Очевидно, что степень поражения кожи и выраженность резорбтивного действия являются функцией как количества нанесенного материала, так и продолжительности его контакта с кожей. При всех, помимо ингаляционного, способах воздействия экспозиционная доза обычно выражается как масса (или объем) тестируемого вещества на единицу массы тела (мг/кг; мл/кг).
Для ингаляционного воздействия экспозиционная доза выражается как количество тестируемого вещества, присутствующего в единице объема воздуха: мг/м3 или части на миллион (ppm - parts per million). При этом способе воздействия очень важно учитывать время экспозиции. Чем продолжительней воздействие, тем выше экспозиционная доза, выше потенциал неблагоприятного действия. Получаемая информация о зависимости "доза-эффект" для различных концентраций вещества во вдыхаемом воздухе должна быть получена при одинаковом времени экспозиции. Эксперимент может быть построен и иначе, а именно различные группы экспериментальных животных ингалируют вещество в одинаковой концентрации, но в течение различного времени.
Для приблизительной оценки токсичности ингаляционно действующих веществ, одновременно учитывающей и концентрацию токсиканта и время его экспозиции, принято использовать величину "токсодоза", рассчитываемую по формуле, предложенной Габером в начале века:

W = C t , где

W - токсодоза (мг мин/м3)
С - концентрация токсиканта (мг/м3)
t - время экспозиции (мин)

Предполагается, что при непродолжительной ингаляции веществ одинаковый эффект (гибель лабораторных животных) будет достигаться как при краткой экспозиции высоких доз, так и более продолжительном воздействии веществ в меньших концентрациях, при этом произведение времени на концентрацию для вещества остается неизменным. Наиболее часто к определению токсодоз веществ, прибегали для характеристики боевых отравляющих веществ. Величины токсичности некоторых ОВ представлены на таблице 5.

Таблица 5. Токсодозы отравляющих веществ (при ингаляционном воздействии)

Вещества LCT50 (мг мин/м3)
1. Удушающего действия - хлор - фосген - дифосген - хлорпикрин 2. Общеядовитого действия - мышьяковистый водород - синильная кислота - хлорциан 3. Кожно-нарывного действия а. Соединения мышьяка: - метиларсиндихлорид - этиларсиндихлорид - фениларсиндихлорид - 2-хлорвиниларсиндихлорид б. Иприты: - дихлор-диэтилсульфид - трихлор-триэтиламин 4. Нервно-паралитического действия (ФОВ) - табун - зарин - зоман - Vx 19000 3200 3200 800 5000 2000 7000 3000 3000 - 5000 2600 1200 - 1500 1500 1500 400 70 100 100

(M. Kruger, 1991)

Кривая "доза-летальность" как правило, аналогична по форме кривой распределения кумулятивной частоты эффекта для других зависимостей "доза-эффект" (см. выше). Для целей сравнения получаемых данных и статистической их обработки кривую преобразуют в форму линейной зависимости, используя систему координат "log D - пробит".
Токсичность по показателю "летальность", как правило, устанавливается по определенному уровню гибели животных в группе. Наиболее часто в качестве контрольного уровня используется 50% гибель животных, так как это соответствует медиане кривой распределения дозы, вокруг которой симметрично концентрируется большинство позитивных ответных реакций (см. выше). Эта величина и получила название - среднелетальная доза (концентрация). По определению вещество, действуя в этой дозе, вызывает гибель половины популяции животных.
Концепция определения ЛД50 веществ была впервые сформулирована Trevan в 1927 году. С этого момента начинается становление токсикологии как настоящей науки, оперирующей количественными характеристиками исследуемого свойства (величина токсичности).
В качестве других уровней смертности, подлежащих определению, могут быть выбраны величины ЛД5, ЛД95, которые согласно законам статистики близки соответственно к порогу и максимуму токсического действия и являются границами дозового интервала, в рамках которого, в основном, и реализуется эффект.
По этическим и экономическим соображениям в опыт для определения ЛД50 стараются брать минимальное количество лабораторных животных. В этой связи определение искомой величины всегда сопряжено с фактором неопределенности. Эта неопределенность учитывается путем нахождения 95% доверительного интервала определяемой величины. Дозы, попадающие в этот интервал, не являются среднесмертельными лишь с вероятностью менее 5%. Доверительный интервал величины ЛД50 значительно меньше, чем доверительные интервалы доз других уровней летальности, что является дополнительным аргументом в пользу именно этой характеристики параметров острой токсичности.
Как уже указывалось важной характеристикой любой кривой "доза-эффект" является её крутизна. Так, если два вещества имеют статистически не различимые значения величин ЛД50 и одинаковую крутизну кривой токсичности "доза-эффект" (т.е. статистически не различимые величины значений соответственно ЛД16 и ЛД84), они, по показателю летальность - эквитоксичны в широком диапазоне доз (вещества А и В на рис. 13). Однако вещества, имеющие близкие значения величин ЛД50, но различную крутизну кривой токсичности существенно отличаются по своим токсическим свойствам (вещество С на рис. 13).

Рисунок 13. Зависимости "доза-эффект" токсикантов с близкими значениями величин ЛД50, но различной крутизной наклона

Вещества с пологой зависимостью "доза-эффект" представляют большую опасность для лиц с выраженной гиперчувствительностью к токсикантам. Вещества с высокой крутизной зависимости более опасны для всего населения, поскольку даже несущественное увеличение доза по сравнению с минимально действующей приводит к развитию эффекта у большинства популяции.

 


4.1.3.2. Определение безопасных доз действия токсикантов

 

В ряде случаев возникает необходимость количественно определить величину максимальной недействующей (безопасной) дозы токсикантов.
Методика решения этой задачи предложена Годдам. Исследование строится на установлении зависимости "доза-эффект" в группе животных. Желательно, чтобы оцениваемый эффект был достаточно чувствительным и оценивался не в альтернативной форме (например снижение активности энзима, подъем артериального давления, замедление роста, нарушение кроветворения и т.д.). График зависимости строится в координатах "логарифм дозы - выраженность эффекта". Анализ кривой позволяет оценить ряд показателей. Поскольку кривая, как правило, имеет S-образную форму, вычленяют участок, в пределах которого зависимость носит линейный характер. Определяют крутизну прямой (b). Пороговый эффект (yS) определяют по формуле: yS = tS, где t - коэффициент Стьюдента, определяемый по соответствующим таблицам; S - величина стандартного отклонения, определяемая из данных опта. Пороговая доза (DS) - это такая доза, действуя в которой вещество вызывает пороговый эффект. Для безопасной дозы (DI) имеем

log DI = log DS - 6(S/b)

Пример, представленный на рисунке 14,комментирует определение безопасной дозы.

Рисунок 14. Графический метод определения порога безопасного действия ксенобиотика.

Пример. В течение нескольких недель крысам в корм добавляли систокс (инсектицид) в различных концентрациях (части на миллион по массе). Эффект оценивали по степени угнетения активности холинэстеразы крови. Каждая точка на графике представляет собой среднюю величину из 6 - 12 наблюдений. На графике рисунка 14 по оси "у" представлены данные о различии активности энзима у интактных и экспериментальных животных (в относительных единицах от 0 до 1,0); по оси "х" - логарифм концентрации токсиканта. Как следует из полученных данных, начиная с определенной дозы (концентрации) зависимость приобретает линейный характер. Крутизна прямой (b) равна - 0,66; среднее значение всех стандартных отклонений в отдельных группах S = 0,097; t - 2. Отсюда пороговый эффект yS = 2 х 0,097 = 0,194. Соответствующее значение DS , как следует из графика, равно 0,42. Тогда имеем: log DI = 0,42 - 6(0,097/0,66) = -0,462. Таким образом, безопасное (недействующее) содержание систокса в пище составляет 0,34 части на миллион.

 


4.1.3.3. Интерпретация и практическое использование результатов


Как правило, основной вывод, который делает токсиколог при установлении позитивной зависимости "доза-эффект", состоит в том, что между воздействием исследуемого вещества и развитием токсического процесса существует причинно-следственная связь. Однако информация о зависимости должна интерпретироваться только относительно условий, в которых она получена. Большое количество факторов влияет на её характер, причем специфично для каждого вещества и биологического вида, на представителей которого вещество действует. В этой связи необходимо учитывать ряд обстоятельств:
1. Точность количественной характеристики значения ЛД50 достигается путем тщательного проведения эксперимента и адекватной статистической обработки получаемых результатов. Если при повторении эксперимента по определению токсичности получают количественные данные, отличные от ранее полученных, это может быть следствием вариабильности свойств использованного биологического объекта и условий окружающей среды.
2. Важнейшей характеристикой опасности вещества является время наступления смерти после воздействия токсиканта. Так, вещества с одинаковым значением ЛД50, но разным временем наступления смерти могут представлять различную опасность. Быстро действующие вещества часто рассматриваются как более опасные. Однако вещества "замедленного действия" с очень продолжительным скрытым периодом часто склонны к кумуляции в организме и в силу этого также чрезвычайно опасны. К числу быстро действующих токсикантов относятся боевые отравляющие вещества (ФОВ, синильная кислота, вещества раздражающего действия и т.д.). Вещества замедленного действия - это полигалогенированные полициклические углеводороды (галогенированные диоксины, дибензофураны и т.д.), некоторые металлы (кадмий, талий, ртуть и т.д.) и многие другие.
3. Более полная интерпретация полученных результатов по оценке токсичности, помимо определения количественных характеристик, требует детального изучения причин смерти (см. соответствующий раздел). Если вещество может вызвать различные потенциально смертельные эффекты (остановка дыхания, остановка сердечной деятельности, коллапс и т.д.), необходимо представлять какой из эффектов является ведущим, а также может ли этот феномен стать причиной усложнения зависимости "доза-эффект". Например, различные биологические эффекты могут быть причиной гибели в острой и отставленной фазе интоксикации. Так, интоксикация дихлорэтаном уже в первые часы может привести экспериментальное животное к гибели вследствие угнетения ЦНС (наркотический, неэлектролитный эффект). В поздние периоды интоксикации животное погибает от острой почечной и печеночной недостаточности (цитотоксический эффект). Очевидно это имеет значение и при определении количественных характеристик токсичности. Так, трет-бутилнитрит при внутрибрюшинном введении мышам и регистрации смертельного эффекта в течение 30 минут имеет величину ЛД50 равную 613 мг/кг; при регистрации смертельных случаев в течение 7 суток, ЛД50 составляет 187 мг/кг. Смерть в первые минут, по-видимому, наступает в результате ослабления тонуса сосудов и метгемоглобинообразования, в позднем периоде, от поражения печени.
4. Величина ЛД50, полученная в остром опыте, не является характеристикой токсичности вещества при его многократном подостром или хроническом воздействии. Так, для веществ с высокой способностью к кумуляции, значение смертельной концентрации токсиканта в среде, определенное при однократном введении, может оказаться существенно выше концентрации, вызывающей смерть при длительном воздействии. Для слабо кумулирующих веществ эти различия могут быть не столь существенными.
На практике данные о зависимости "доза-эффект" и значения величин ЛД50 часто используют в следующих ситуациях:
1. Для характеристики острой токсичности веществ в ходе рутинных токсикологических исследований и сравнения токсичности нескольких химических соединений.

На основе полученных характеристик ксенобиотик может быть отнесен к одному из четырех классов токсичности (Таблица 6).

Таблица 6. Классификация ксенобиотиков по степени токсичности

Степень токсичности Энтеральное введение Ингаляционное введение
  ЛД50 (мг/кг) ЛК50 (мг/л) ПДК (мг/м3)
Чрезвычайно токсичные Высокотоксичные Умеренно токсичные Малотоксичные менее 15 15 - 150 151 - 1500 более 1500 Менее 1 1 - 10 11 - 40 более 40 менее 1 10 100 более 100

(Заугольников С.Д. и соавт., 1967)

Отнесение веществ к мало- или высокотоксичным во многом носит субъективный характер. Так, Hodg G. и Gleason S. (1975) предлагают иную шкалу токсичности ксенобиотиков (таблица 7).

Таблица 7. Шкала токсичности (смертельное действие) веществ, при их поступлении через рот (По Hodg G., Gleason S., 1975)

Степень токсичности Сухое вещество (мг/кг) Жидкое вещество (на человека)
Сверхтоксичные Высокотоксичные Токсичные Умеренно токсичные Малотоксичные Нетоксичные менее 5 5 - 50 50 - 500 500 - 5000 5000 - 15000 более 15000 менее 7 капель 7 капель - ложка ложка - рюмка (30 мл) 30 мл - 0,5 л 0,5 л - 2 л более 2 л

В настоящее время в России химические вещества принято разделять на 4 класса опасности (таблица 8).

Таблица 8. Классификация химических веществ по степени опасности (ГОСТ 12.1.007-76)

Показатели Класс опасности
 
ПДК мг/м3 <0,1 0,1-1,0 1,1-10,0 >10,0
ЛД50 p/o мг/кг <15 15-150 151-5000 <5000
ЛД50 р/cut мг/кг <100 100-500 501-2500 <2500
ЛК50/2 час мг/м3 <500 500-5000 5001-50000 <50000
КВИО* >300 300-30 29-3 >3

· КВИО - коэффициент возможности ингаляционного отравления. Определяют, как отношение максимально возможной концентрации токсиканта (пара) в воздухе, к среднесмертельной концентрации

2. Для определения уровней безопасного воздействия токсиканта. Для большинства веществ можно определить дозы, при уменьшении которых, вещества утрачивают способность инициировать токсический процесс. Доза, ниже которой современными методами исследования не выявляется действие химического вещества на биологический объект (организм), называется "пороговой дозой". Концепция пороговости полезна тем, что на её основе с помощью специальных методов определяют, а затем оценивают и юридически утверждают дозы веществ, признаваемые безопасными для человека в условиях повседневной жизни, производства, специальных ситуаций (аварии) - ПДК, МДК, ОБУВ и т.д.

– Конец работы –

Эта тема принадлежит разделу:

ПРЕДМЕТ И ЗАДАЧИ ТОКСИКОЛОГИИ

ПРЕДИСЛОВИЕ АВТОРА... РАЗДЕЛ ВВЕДЕНИЕ... ГЛАВА ПРЕДМЕТ И ЗАДАЧИ ТОКСИКОЛОГИИ Предмет изучения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Предварительные замечания

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

The summary
The book is designed for acquaintance of the reader with fundamental problems of modern toxicology, essence of a phenomenon of toxicity and the toxic process, shown as interaction of various chemic

Попытка определения
Любой предмет уясняется через определение. Общепринятого определения токсикологии в настоящее время не существует. Самым простым является, непосредственно вытекающее из названия науки: toxicon - яд

Токсичность
Токсичность - основное понятие современной токсикологии. В общей форме можно определить токсичность, как свойство (способность) химических веществ, действуя на биологические системы немехан

Токсический процесс
Токсичность проявляется и может быть изучена только в процессе взаимодействия химического вещества и биологических систем (клетки, изолированного органа, организма, популяции). Фор

Формы проявления токсического процесса на разных уровнях организации жизни
Внешние, регистрируемые признаки токсического процесса называются его проявлениями. В ряде приведенных выше определений токсикологии просматривается представление, согласно котором

А. Процессы, формирующиеся по пороговому принципу.
Причинно-следственная связь между фактом действия вещества и развитием процесса носит безусловный характер: при действии веществ в дозах ниже определенных уровней токсический процесс не развивается

Б. Процессы, развивающиеся по беспороговому принципу.
Причинно-следственные связи между фактом действия вещества и развитием процесса носят вероятностный характер: вероятность формирования эффекта сохраняется при действии на организм даже одной молеку

Транзиторные токсические реакции наиболее часто развиваются вследствие раздражающего и седативно-гипнотического действия токсикантов.
Явления раздражения слизистой дыхательных путей, глаз, кожи отмечается при остром воздействии многими веществами - альдегидами, кетонами, галогенами и т.д. Не являясь заболеванием, это состояние, т

Структура токсикологии
Токсикологическая наука представлена несколькими основными направлениями. Экспериментальная токсикологияизучает общие закономерности взаимодействия веществ и биологических

Общая характеристика токсикантов
Как указывалось ранее, следует исключить понятие яд из определения науки токсикологии. Однако это не означает, что этот термин не следует использовать в практической деятельности. Необходимо лишь п

Бактериальные токсины
По большей части бактериальные токсины представляют собой высокомолекулярные соединения, как правило, белковой, полипептидной или липополисахаридной природы, обладающие антигенными свойствами. В на

Микотоксины
Химическое строение и биологическая активность микотоксинов чрезвычайно разнообразны. Они не представляют собой некую единую в химическом отношении группу. С практической точки зрения наибольший ин

Токсины высших растений
Огромное количество веществ, токсичных для млекопитающих, человека и других живых существ, синтезируется растениями (фитотоксины). Являясь продуктами метаболизма растений, фитотоксины порой выполня

Токсины животных (зоотоксины)
Любой живой организм синтезирует огромное количество биологически активных веществ, которые после выделения, очистки и введения другим организмам в определенных дозах могут вызывать тяжелые интокси

Неорганические соединения естественного происхождения
Среди многочисленных неорганических соединений естественного происхождения, вероятно, наибольшее токсикологическое значение имеют металлы и их соединения, а также газообразные вещества - поллютанты

Органические соединения естественного происхождения
Основными природными источниками органических соединений являются залежи угля, нефти, вулканическая деятельность. Помимо предельных и непредельных алифатических углеводородов, большое токсикологиче

Синтетические токсиканты
Подавляющее большинство известных химических соединений получены синтетическим путем. Нет такой области деятельности, в ходе которой современный человек не контактировал бы с химическими веществами

Пестициды
Пестициды - вещества, предназначенные для борьбы с животными- и растениями-вредителями с целью повышения урожайности и сохранения материальных ценностей, созданных человеком. В отличие от других по

Органические растворители
Органические растворители используют повсеместно: на производствах, в сельском хозяйстве, в быту. К числу растворителей относятся вещества, с близкими физико-химическими свойствами. Это жидкости, п

Лекарства, пищевые добавки, косметика
Количество лекарств, выпускаемых в мире, составляет десятки тысяч тон веществ многих сотен наименований. Практически любое лекарственное средство обладает токсичностью и при неправильном его исполь

Боевые отравляющие вещества (БОВ)
Мысль применить отравляющие газы для военных целей приписывают известному химику профессору Нернсту. Бурное развитие химической промышленности во второй половине века явилось материальной основой д

Уровни организации биологических систем
Жизнь - высшая форма существования материи. Обычно выделяют следующие уровни её организации: молекулярный, молекулярных систем, субклеточный, клеточный, органный, целостного организма, популяционны

Термодинамика биосистем. Термодинамические аспекты токсичности
Материя существует в различных состояниях. С позиций классической термодинамики существование материи в форме живых организмов и даже единичных клеток маловероятно. Как известно, для частиц, являющ

Фундаментальные свойства живых систем.
Для всех уровней организации живых систем характерны свойства, отличающие живую материю от неживой. К числу основных, фундаментальных свойств живого относятся: 1. Потребление из окружающей

Степени свободы токсического воздействия
С усложнением организации биосистем формируются новые структуры, появляются новые функции, в результате увеличивается разнообразие способов их повреждения химическими веществами. Так, путем образов

Размеры молекулы
Размеры молекулы токсиканта оказывают влияние на его биологическую активность в силу ряда причин: а). С увеличением молекулярной массы затрудняется процесс поступления токсиканта в организ

Геометрия молекулы токсиканта
Химическая формула, как правило, несет недостаточно информации о свойствах вещества, в частности о геометрии молекулы. Вместе с тем изучение зависимости "строение - активность" в токсикол

Физико-химические свойства вещества
Физико-химические свойства веществ существенным образом сказываются на их токсичности. Определяющими являются: растворимость в воде, растворимость в липидах, кислотно-основная природа токсиканта.

Стабильность в среде
Биологическое действие токсикант может оказывать лишь при условии его достаточной стабильности в окружающей среде и средах организма. Если вещество нестабильно, то развивающийся эффект связан с воз

Химические свойства.
Взаимодействие токсиканта с молекулами-мишенями организма подчиняется тем же закономерностям, что и любая другая химическая реакция, протекающая ex vivo и, следовательно, во многом зависит от его х

Типы химических связей, образующихся между токсикантами и молекулами-мишенями организма
При взаимодействии токсиканта с биологическими структурами-мишенями могут образовываться различные типы химических связей (таблица 3). Таблица 3. различные типы связей, формирующихся между

Действие токсиканта на элементы межклеточного пространства
Каждая клетка организма окружена водной средой - интерстициальной или межклеточной жидкостью. Для клеток крови межклеточной жидкостью является плазма крови. Основные свойства межклеточной жидкости:

Взаимодействие токсикантов с белками.
Основные функции белков: транспортная, структурная, энзиматическая (белки - биологические катализаторы). Токсический эффект может развиваться при нарушении каждой из этих функций. Нарушени

Усиление каталитической активности
Усиление синтеза энзимов может быть вызвано поступлением в организм токсикантов-индукторов. Физиологическими индукторами синтеза энзимов являются многие субстраты и вещества, повышающие со

Угнетение каталитической активности
Снижение активности энзимов при действии токсикантов может быть следствием трех эффектов: подавления процессов синтеза апофермента и кофакторов, активации разрушения, угнетения специфической активн

Взаимодействие токсикантов с нуклеиновыми кислотами.
Дезоксирибонуклеиновые кислоты - основной компонент хромосомного аппарата клеток. Рибонуклеиновые кислоты представлены информационной, транспортной, рибосомальной РНК. Их функция - участие в синтез

Взаимодействие токсикантов с липидами
Важнейшая функция липидов - формирование биологических мембран. Вещества, разрушающие, изменяющие структуру липидов, нарушающие взаимодействие между молекулами липидов (гидрофобные связи) повреждаю

Селективные рецепторы клеточных мембран
Селективные рецепторы клеточных мембран - это протеины, встроенные в липидные бислои. Гидрофобный участок

Изучение локализации рецепторов в биообъекте
Выяснение характера распределения рецепторов различных токсикантов в тканях, клетках, субклеточных структурах возможно с помощью различных методических приемов. Непрямым методом является обнаружени

Понятие полирецепторного профиля связывания токсиканта
Селективное связывание токсиканта с рецепторами одного типа характерно лишь для очень небольшого числа высоко токсичных соединений (например, некоторые ФОС, ботулотоксин, сакситоксин, тетродотоксин

Радиолигандные методы изучения процесса взаимодействия токсиканта с рецепторами
Поскольку токсичность веществ во многом определяется их способностью взаимодействовать с рецепторами определенных типов, количественная оценка сродства конкретного вещества к конкретному рецептору

Системы энергообеспечения клетки
Если между двумя веществами осуществляется взаимодействие, например: А + В АВ, то с

Механизмы токсического повреждения систем энергообеспечения клетки
Нарушение процессов биоэнергетики приводит к повреждению биологических систем, вплоть до их гибели. Токсиканты могут влиять на энергетические процессы различными способами. Некоторые примеры предст

Нарушение гомеостаза внутриклеточного кальция
Роль кальция, как регулятора физиологических процессов, протекающих в клетке, хорошо известна. Нарушение внутриклеточного гомеостаза этого иона, сопровождающееся существенным повышением его концент

Повреждение цитоскелета
Цитоплазма клетки помимо цитозоля и клеточных органелл, как правило, содержит еще и нитевидные белковые структуры, которые в массе формируют клеточный скелет. Это образование выполняет не только ст

Активация фосфолипаз
Фосфолипазы катализируют гидролиз фосфолипидов, входящих в состав клеточных мембран. Эти энзимы широко представлены в различных клетках. Особое внимание исследователи уделяют фосфолипазам А2

Активация протеаз
К числу протеаз, с оптимумом активности в области нейтральных значений рН, относятся: АТФ-зависимые, убиквитин-зависимые, Са2+_зависимые (кальпаины) протеазы. Кальпаины присутствуют прак

Активация эндонуклеаз
При завершении клеткой жизненного цикла активируется процесс "программированной" физиологической клеточной гибели - апоптоз. На ранних этапах в апаптотической клетке проявляются морфологи

Сущность явления
Многие ксенобиотики, попав во внутренние среды организма, подвергаются метаболическим превращениям (см. раздел "Биотрансформация ксенобиотиков в организме"). Одним из возможных результато

Механизмы клеточной антирадикальной защиты
Свободные активные радикалы в норме в клетке образуются постоянно. Так, в процессе метаболизма веществ в гладком эндоплазматическом ретикулуме флавопротеины, а в митохондриях окислительные энзимы ц

Механизмы активации ксенобиотиков и образования свободных радикалов
Ксенобиотики могут трансформироваться в радикалы как энзиматическим, так и неэнзиматическим путем. Например известны токсиканты, специфично повреждающие тела дофаминэргических и серотонинэргических

Биологические последствия активации свободно-радикального процесса в клетке
В результате образования свободных агрессивных радикалов повреждаются самые разные структуры-мишени: липидные мембраны, свободные аминокислоты, полисахариды, нуклеиновые кислоты, рецепторные молеку

Основные свойства и функции биологических мембран
1. Плазматическая мембрана. Содержимое клетки отграничено от окружающей среды плазматической мембраной. Благодаря этому поддерживаются условия, позволяющие структурным элементам кл

Прямое действие на мембраны
Возможно действие ксенобиотиков непосредственно на липидный бислой или белковые компоненты биомембран. Развивающиеся вследствие этого эффекты могут быть как неспецифичными (отсутст

Активация перекисного окисления липидов
Благодаря ненасыщенности углеводородной цепи жирных кислот и непрочности связи аллильных атомов водорода с метиленовыми группами, фосфолипиды клеточных мембран наиболее предрасположены к реакции ок

Активация фосфолипаз
Важным механизмом повреждения биологических мембран является гидролиз фосфолипидов, наступающий вследствие активации фосфолипаз (особенно фосфолипазы A2). Активация энзима происходит в р

Биологические последствия действия токсикантов на мембраны
Вещества, действующие на клеточные мембраны, как правило, изменяют следующие их параметры: 1. Проницаемость. Изменяется поступление субстратов в клетки и отток продуктов метаболизма. Дейст

Синтез РНК. Транскрипция
В клетках определяются несколько форм РНК. Особое функциональное значение имеют: м-РНК, как матрица для синтеза полипептидов, t-РНК - молекула-переносчик аминокислот на рибосомы для их последующей

Синтез белков. Трансляция
Объединение аминокислот в полипептидную цепь осуществляется на рибосомах или полисомах. Токсиканты могут вмешиваться в процессы синтеза белка и на этом этапе. Возможны следующие механизмы токсическ

Биологические последствия действия токсикантов на нуклеиновый обмен и синтез белка
Токсикологическое значение веществ, вмешивающихся в процесс синтеза белка и клеточное деление, обусловлено их цитостатическим, иммуносупрессорным, мутагенным, тератогенным и канцерогенным действием

Основные категории и типы эпидемиологических исследований
Можно выделить три категории эпидемиологических исследований: - описательные; - аналитические (этиологические); - интервенционные. Описательные исследования пред

Показатели состояния обследуемой популяции
Основными исходными данными для эпидемиологического исследования являются заболеваемость и распространенность анализируемого эффекта (токсического процесса). Заболеваемость

Метод регистрации серии событий
Это самый простой, но и наименее эффективный тип эпидемиологического анализа. Он состоит в простой констатации (документально оформленной официальными службами контроля) факта появления в популяции

Метод когортных исследований
Когортное исследование основывается на результатах обследования группы лиц (когорты), находящихся (находившихся) в условиях воздействия некоего фактора, с целью установления частоты случаев развити

Другие методы
Кластерные исследования оценивают частоту ожидаемых эффектов в группах лиц, подвергшихся (подвергающихся) воздействию вредного фактора, неформально объединенных каким-либо кластеробразующим показат

Интерпретация результатов (принципы формирования выводов)
В ходе эпидемиологических исследований редко удается выявить абсолютную связь между интересующим фактором и изучаемой патологией. В этой связи разработана концепция "паутины" причин, согл

Исторические аспекты
В 50-х годах, вследствие установления факта канцерогенности ионизирующих излучений, появилась необходимость оценки риска развития новообразований при облучении. Разработка методики оценки риска кан

Процесс оценки риска
Из-за большого разнообразия условий и свойств токсикантов не возможно создать единый сценарий, позволяющий оценивать риск всех химических веществ во всех возможных ситуациях. Существует методология

Идентификация опасности
В ходе этого этапа определяют, какие вещества оказывают воздействие на организм, пути их поступления в окружающую среду, обладают ли они потенциальной способностью вызывать неблагоприятные эффекты

Оценка воздействия
Оценка воздействия - этап, на котором количественно определяют дозу токсиканта, действующую на организм в конкретной анализируемой ситуации (экспозиционная доза). При этом изучают данные определени

Оценка токсичности
Третий этап исследования состоит в установлении зависимости "доза-эффект" для изучаемых веществ. Конечная цель этого этапа работы заключается в установлении уровня доз, при которых появля

Характеристика риска
Характеристика риска - конечный этап работы. На этом этапе обобщается вся информация, использованная и полученная на предыдущих этапах. Итоговый документ по оценке риска составляется в зависимости

Недостатки методологии оценки риска
Методология оценки риска была разработана как инструмент принятия решения административными органами, на основе данных о возможном ущербе здоровью, наносимом оцениваемым фактором. Определенная наде

Экстраполяция данных
Экстраполяция - это процесс распространения выводов (суждений, заключений), полученных для определенных объектов в определенных условиях, на иные объекты и иные условия. Экстраполяция при оценке ри

Неадекватные исследования
Многие данные, полученные в эксперименте, не могут быть надежно использованы в процессе оценки риска. Так, целый ряд характеристик токсичности веществ получен в условиях, совершенно не соответствую

Различия в механизмах токсического действия
Особенности механизмов токсического действия веществ могут иметь решающее значение для выбора методологии оценки риска действия ксенобиотиков. Так, принято выделять две группы канцерогенов: взаимод

Популяционные различия
Методология расчета риска имеет дело с "типичным" человеком, но хорошо известно, на сколько реальные люди отличаются от воображаемого стандарта. Определяемые значения коэффициентов риска

Неопределенность при оценке воздействия
Оценка воздействия - самый слабый элемент системы оценки риска. Значения, обычно характеризующие воздействия, являются результатом редких измерений. Дозы, которые получил человек, часто устанавлива

Неопределенность, связанная с комбинированным действием токсикантов
В реальных условиях люди не подвергаются изолированному воздействию какого либо одного химического вещества. Как правило, действуют смеси соединений самого различного состава. Естественно, в лабора

Свойства организма, влияющие на токсикокинетику ксенобиотиков.
Свойства компартментов: - соотношение воды и жира в клетках, тканях и органах. Биологические структуры могут содержать либо мало (мышечная ткань), либо много жира (биологические мембраны,

Растворение и конвекция
Растворение - процесс накопления вещества в жидкой фазе (растворителе) в молекулярной или ионизированной форме. Количественно процесс характеризуется растворимостью, т.е. максималь

Диффузия в физиологической среде
Диффузия -процесс перемещения массы вещества в пространстве в соответствии с градиентом концентрации, осуществляемый вследствие хаотического движения молекул. Диффузия вещ

Диффузия веществ через липидные мембраны
Исследования с использованием искусственных липидных мембран, сформированных из фосфатидилхолина (лецитина) свидетельствуют, что такие мембраны непроницаемы для заряженных ионов даже небольшого диа

Диффузия через поры
Проникновение через биологические барьеры веществ, растворимых преимущественно в воде, осуществляется путем диффузии через водные каналы (поры), а потому определяется размерами молекулы и практичес

Межклеточный транспорт химических веществ
Через специальные каналы, так называемые коннексоны, возможен обмен между контактирующими друг с другом клетками веществами с молекулярной массой до 1000 дальтон (ионами, аминокислотами, сахарами,

Диффузия растворенных газов
Благодаря малым размерам молекул, газы в биологических средах диффундируют с относительно высокой скоростью. Они хорошо проникают из окружающей среды в кровь, а затем из крови в ткани. Это справедл

Фильтрация
Под фильтрацией понимают процесс просачивания жидкости с растворенными в ней молекулами веществ под действием механической силы (гидростатическое, осмотическое давление) через пористые мембраны, за

Капиллярная фильтрация
На распределение жидкости между интра- и экстравазальным пространствами тканей влияют следующие факторы: - давление крови в капиллярном русле (рк); - давление жидкости

Специфический транспорт веществ через биологические барьеры
Хорошая проницаемость ряда биологических барьеров для нерастворимых в липидах веществ объясняется наличием транспортных систем (транслоказ, транспортных белков и т.д.), которые осуществляют их спец

Активный транспорт
Активный транспорт - это процесс переноса химических веществ через биологическую мембрану против градиента его концентрации. Процесс всегда сопряжен с расходованием энергии и протекает in vivo

Каталитическая (облегченная) диффузия
Отличие этого процесса от активного транспорта состоит в том, что перенос вещества через мембрану осуществляется по градиенту концентрации. После уравнивания концентрации вещества по обе стороны ме

Транспорт веществ путем образования мембранных везикул
Процесс транспорта веществ через мембраны путем образования везикул, содержащих эти вещества, называется цитозом. На основе данных гистологических исследований выделяют несколько видов цитоза (табл

Факторы, влияющие на резорбцию
Скорость и характер резорбции веществ определяется рядом факторов (рисунок 1). Их можно отнести к одной из следующих групп: - обусловленные особенностями организма; - обусловленны

Резорбция через кожу
Площадь поверхности кожных покровов взрослого человека составляет в среднем 1,6 м2. Анатомически кожа состоит из нескольких слоев (см раздел "Дерматотоксичность"). С позиций то

Способы резорбции
Проникновение веществ через кожу осуществляется тремя путями: через эпидермис, через сальные и потовые железы, через волосяные фолликулы. Для хорошо проникающих через кожу низкомолекулярных и липоф

Факторы, влияющие на скорость резорбции
Проникновение ксенобиотиков через кожу представляет собой процесс пассивной диффузии. До настоящего времени не зарегистрировано случаев активного трансдермального транспорта веществ. Резорбция веще

Площадь и область резорбции
Количество вещества, проникающего через кожу, пропорционально площади контакта вещества и кожи. С увеличением площади, увеличивается и количество всасываемого вещества. При действии в форме аэрозол

Кровоснабжение
Кровоснабжение кожи слабее многих других органов, например мышц. Площадь сосудистого русла, снабжающего кожу кровью 1 - 2 см2 на 1 см2, а скорость кровотока составляет около 0

Свойства действующих веществ
На процесс резорбции в наибольшей степени влияют физико-химические свойства токсикантов и прежде всего способность растворяться в липидах (липофильность). Существует отчетливая корреляция между вел

Экзогенные факторы
Повреждение рогового слоя эпидермиса и жировой смазки кожи (кератолитическими средствами, органическими растворителями) приводит к усилению резорбции токсикантов. Механическое повреждение кожи с об

Резорбция через слизистые оболочки
Слизистые оболочки, не зависимо от того, образованы они многослойным или однослойным эпителием, кубическими или плоскими клетками, лишены рогового слоя и жировой пленки на поверхности. Они покрыты

Резорбция в ротовой полости
Многие токсиканты достаточно быстро всасываются уже в ротовой полости. Эпителий полости рта не представляет собой значительной преграды на пути ксенобиотиков. В резорбции участвуют все отделы ротов

Резорбция в желудке
В целом ксенобиотики плохо всасывается в желудке, хотя его слизистая оболочка мало отличается от слизистой других отделов желудочно-кишечного тракта. В основе резорбции лежит механизм простой диффу

Растворимость в жирах и рН
Особенностью резорбции в желудке является то, что она осуществляется из среды с низким значением рН. В этой связи эпителий слизистой формирует своего рода липидный барьер между водными фазами: кисл

Содержимое желудка
Если токсикант поступает в желудок с пищей, то возможно взаимодействие с её компонентами: растворение в жирах и воде, абсорбция белками и т.д. Поскольку градиент концентрации ксенобиотика при этом

Резорбция в кишечнике
Кишечник, в силу особенностей строения, является одним из основных мест всасывания химических веществ (таблица 6). Таблица 6. Некоторые характеристики слизистой тонкой кишки человека

Размеры молекулы
Проникновение веществ через слизистую оболочку существенно зависит от размеров молекул. Как правило, с увеличением молекулярной массы проникновение соединений через слизистую уменьшается. Например,

Заряд молекулы
Всасывание ионов зависит от их строения и величины заряда. В то время как одновалентные ионы (Cl-, NO2-, NO3-, Na+, K+,

Отделы кишечника
Все отделы кишечника принимают участие в резорбции ксенобиотиков. С наивысшей скоростью всасывание происходит в тонкой кишке. В среднем период "полувсасывания" веществ у крысы составляет

Содержимое кишечника
Потребленная пища модифицирует всасывание токсикантов в кишечнике. Содержимое кишки может выступать в качестве инертного наполнителя, в который включено вещество и из которого замедляется его резор

Резорбция в легких
Легкие - орган, предназначенный для осуществления обмена веществом, в частности жизненно важными газами, между организмом и окружающей средой. Помимо вдыхаемого О2 и другие вещества, нах

Резорбция газов
Если человек или экспериментальное животное в течение определенного времени вдыхает воздух, содержащий некое вещество в постоянной концентрации (например, 4% эфир), то процесс его проникновения и р

Вентиляция легких
Для резорбции вдыхаемый газ должен вступить в контакт с альвеолярной поверхностью легких. Альвеолы расположены глубоко в легочной ткани, поэтому путем простой диффузии газ не сможет быстро преодоле

Поступление в кровь
Переход газа из альвеолы в кровоток осуществляется посредством диффузии. При этом молекула соединения переходит из газообразной среды в жидкую фазу. В этой связи поступление вещества зависит от сле

Переход газов в ткани
Кровь, насыщенная газом в легких, распространяется по организму. Вследствие более высокого содержания в крови, молекулы газа диффундируют в ткани. Кровь, освободившаяся от газа, возвращается к легк

Резорбция аэрозолей
Аэрозоль - это смесь фаз. Смесь газовой фазы и мельчайших частиц жидкости называется туманом. Смесь газовой фазы и мельчайших твердых частиц - дымом. При ингаляции аэрозолей глубина их проникновени

Резорбция слизистыми глаз
Проникновение токсикантов через слизистую глаз подчиняется общим закономерностям (см. выше). Прежде всего скорость процесса определяется физико-химическими свойствами вещества (растворимостью в лип

Резорбция из тканей
При действии веществ на раневые поверхности или введении в ткань (например, подкожно или внутримышечно) с помощью специальных устройств, возможно их поступление либо непосредственно в кровь, либо с

Стенка капилляра
Стенка капилляра представляет собой пористую мембрану. Её толщина в различных тканях колеблется от 0,1 до 1,0 мкм. Для капилляров большинства тканей человека характерны поры диаметром, в среднем, о

Капиллярная и лимфатическая система
Сеть капилляров и лимфатических сосудов хорошо развита в подкожной клетчатке и в межмышечной соединительной ткани. Площадь поверхности капиллярного русла в определенном объеме тканей оценивается по

Кровоснабжение
Абсолютное количество капилляров на единицу объема тканей представляет собой лишь условную меру отражающую степень их кровоснабжения. Большое значение имеет процент раскрытых, функционирующих капил

Свойства токсиканта
Как указывалось, поры капилляров имеют диаметр 3 - 4 нм. Поэтому через них могут проникать большие водорастворимые молекулы. Даже такие макромолекулы как инсулин (МВ 5733), тетанотоксин, ботулотокс

Квота резорбции
Для количественной характеристики способности веществ проникать в организм тем или иным путем, используют разные подходы. В эксперименте проблема может быть решена путем умерщвления животных в разл

Принципы распределения
На процесс перехода токсикантов из крови в ткани (и наоборот) влияют следующие структурно-функциональные особенности органов: - свойства стенок их капиллярного русла; - степень ва

Проникновение веществ через стенку капилляра
Водо-растворимое вещество, циркулирующее в крови, не диффундирует в ткани, если радиус молекулы превышает радиус пор стенки капилляров. Как правило, это случается с высокомолекулярными соединениями

Значение особенностей кровоснабжения органов
Распределение токсикантов в первые минуты - часы после их поступления в организм, до достижения стационарной фазы, в значительной степени определяется характером кровоснабжения органов. Об

Проникновение через клеточную мембрану
Токсиканты, хорошо растворяющиеся в липидах легко проникают не только через гистогематические барьеры, но и через клеточные мембраны и попадают внутрь клеток. Водо-растворимые соединения м

Распределение в соответствии с химическим сродством
Вещества, с высоким химическим сродством к определенным молекулам, молекулярным комплексам и т.д., накапливаются в тканях, содержащих такие молекулы в больших количествах. Типичным примером являетс

Объем распределения
Если вещество в дозе "Д" ввести внутривенно и оно, в соответствии со способностью преодолевать гистогематические барьеры и клеточные мембраны, распределится в жидкостях и тканях организма

Белки плазмы крови
Плазма крови человека содержит около 75 мг/мл белка. Основная масса представлена альбуминами: 35 - 55 мг/мл, выполняющими, главным образом, транспортные функции. К числу других групп относятся белк

Характеристики связывания ксенобиотиков
Перечень связывающихся на белках крови молекул простирается от простых неорганических до сложных макромолекулярных соединений. Достаточно хорошо это явление изучено применительно к разнообразным ле

Конкурентные отношения при взаимодействии ксенобиотиков с белками
Если в растворе белка находится несколько химических соединений, между ними могут возникнуть конкурентные отношения за образование связи с протеинами. Эту закономерность легко проследить на примере

Связывание клетками крови
В крови токсикант может вступать во взаимодействие не только с белками плазмы, но и форменными элементами крови и прежде всего с эритроцитами. При этом возможно: 1. Связывание вещества клеточной ме

Гематоэнцефалический и гематоликворный барьеры.
Общая площадь поверхности капилляров мозга велика и составляет в среднем 52 см2/г ткани, причем в различных структурах этот показатель не одинаков. Так, в белом веществе мозга обезьяны п

Некоторые свойства гематоэнцефалического и гематоликворного барьеров
Проницаемость ГЭБ для различных веществ оценивают путем их введения в кровь, с последующим определением в динамике концентрации в плазме, ликворе и гомогенате мозга. Свойства веществ, влия

Гематоофтальмический барьер
На пути веществ из крови во внутриглазное пространство (и в обратном направлении) лежат барьеры двух типов. Первый регулирует обмен веществ между кровью и внутриглазной жидкостью (камерами

Проникновение ксенобиотиков в печень
Печень - важнейший орган, принимающий участие в обмене веществ. Кровь, оттекающая от кишечника и содержащая вещества, поступившие в организм, направляются по системе портальной вены, прежде всего,

Сосудистое русло
Орган снабжается кровью из двух источников. Система портальной вены приносит в печень венозную кровь, оттекающую от кишечника. Аортальная кровь поступает через печеночную артерию. В этой связи, ксе

Активный транспорт
Помимо жизненно необходимых веществ, печень активно захватывает многие чужеродные соединения. Прежде всего к их числу относятся различные органические кислоты и некоторые основания, выделяющиеся за

Мембранная диффузия
Как уже указывалось, функции гистогематического барьера в печени выполняют клеточные мембраны гепатоцитов. Мембрана печеночных клеток отличается высокой порозностью (в сравнении с другими клетками)

Фагоцитоз
Агломераты макромолекул, микрочастицы веществ, попавшие (или образовавшиеся) в кровь могут захватываться путем фагоцитоза Купферовскими звездчатыми клетками синусоидов печени. К фагоцитозу способны

Поступление ксенобиотиков в экзокринные железы
Распределение веществ между кровью и железами изучено достаточно хорошо. Методически это выполняется в опытах in vivo или на изолированных органах. В процессе исследования одновременно изуча

Плацентарный барьер
Плацента человека состоит из тканей матери и плода. Кровеносные сосуды матери впадают в межворсинчатое пространство, в которое проникают выросты хориона. В последних, в рыхлой ткани, находятся сосу

Характеристика проникновения токсикантов через плаценту и распределение их в тканях плода
Большинство чужеродных веществ преодолевает плацентарный барьер путем простой диффузии. Для некоторых субстратов, биорегуляторов и жизненно-необходимых веществ могут существовать механизмы активног

Депонирование
Под депонированием понимают особый вид распределения ксенобиотиков в организме, проявляющийся накоплением, а затем относительным постоянством их содержания в определенном органе или ткани, в течени

Депонирование вследствие химического сродства и растворимости в липидах
Различные токсиканты могут образовывать с биологическими молекулами ковалентные связи и таким образом накапливаться в тканях. Типичными примерами являются алкилирующие агенты тип ипритов, взаимодей

Концепция l и ll фазы метаболизма ксенобиотиков
l фаза метаболизма в широком смысле может быть определена, как этап биотрансформации, в ходе которого к молекуле соединения либо присоединяются полярные функциональные группы, либо осуществляется э

Локализация процессов биотрансформации
Основным органом метаболизма ксенобиотиков в организме человека и млекопитающих является печень, главным образом благодаря разнообразию и высокой активности здесь ферментов биотрансформации. Кроме

Первая фаза метаболизма
Разнообразие чужеродных химических веществ, способных подвергаться в организме метаболическим превращениям, является следствием многообразия энзимов, участвующих в l фазе биотрансформации и их низк

ЦитохромР-450-зависимая монооксигеназная система
Энзимы рассматриваемой группы, цитохромР-450 зависимые оксидазы (Р-450), как правило, обладают низкой субстратной специфичностью, вызывая превращения веществ самого разного строения, и потому часто

Реакции, катализируемые цитохромомР-450
Окисление ксенобиотиков при участии Р-450 - основной механизм их биотрансформации в l фазе метаболизма. Р-450 катализирует окисление практически всех классов органических молекул. Субстратом для эн

Эпоксидирование и гидроксилирование ароматических соединений.
Метаболизм полициклических и ароматических углеводородов сопровождается образованием реакционно-способных промежуточных продуктов метаболизма, в частности ареноксидов, способных вызывать некроз кле

Десульфурирование и расщепление эфиров.
Фосфоротиоаты (1) и фосфородитиоаты (2), являющиеся представителями большой группы инсектицидов, приобретают способность угнетать активность ацетилхолинэстеразы (за счет этого реализуется их биолог

Оксилительное деалкилирование.
Классическим примером превращения данного типа является О-деалкилирование р-нитроанизола. Поскольку продукт превращения легко определяется, реакцию нередко используют для оценки активности Р-450:

Флавинсодержащие монооксигеназы (ФМО)
Флавинсодержащие монооксигеназы (ФМО) также локализуются в эндоплазматическом ретикулуме. В отличии от Р-450, ФМО встречается в тканях в форме одного, свойственного виду, энзима, не подвергающегося

Простогландинсинтетаза-гидропероксидаза и другие пероксидазы
Обширная группа пероксидаз участвует в разрушении перекиси водорода и других перекисей, превращая их в воду и спирты. В ходе этих реакций возникают побочные продукты, обладающие окислительными свой

Дегидрогеназы
Помимо микросом, энзимы, участвующие в окислении ксенобиотиков, выявляются также в митохондриях и растворимой фазе цитозоля. Процесс дегидрирования ксенобиотиков проходит в организме чаще в форме г

Флавопротеинредуктазы
Флавопротеинредуктазы участвуют в метаболизме некоторых ксенобиотиков, причем превращение в частности хинонов приводит к генерации свободных радикалов в клетках. Продукты превращения хинонов могут

Расщепление эфиров
В тканях человека и животных, а также в жидкостях организма, например крови, содержатся энзимы, обладающие эстеразной активностью. Их низкая специфичность обеспечивает гидролиз эфиров различного ст

Расщепление амидов кислот
Токсиканты, содержащие эфирные связи расщепляются в организме с большой скоростью (см. выше). Результатом такого расщепления является изменение токсичности ксенобиотиков. При синтезе новых токсикан

Эпоксидгидролазы
Эпоксидгидролазы активируют превращение эпоксидов в трансдигидродиолы. Описаны микросомальная и цитозольная фракции энзима. Для осуществления превращения ксенобиотиков не требуется присутствие в ср

Другие гидролазы
В 1955 году Mounter et al. обнаружили в разных тканях и крови млекопитающих энзим (флюорогидролаза), активирующий отщепление от атома фосфора высокотоксичных фосфорорганических соединений (ДФФ, зар

Вторая фаза метаболизма. Конъюгация
Превращение молекул в первой фазе биотрансформации усиливает их полярность, уменьшает способность растворяться в липидах. Уже только благодаря этому целый ряд чужеродных соединений лучше выделяется

Ацетилирование
Аминогруппы ароматических соединений часто подвергаются ацетилированию. Уксусная кислота переносится на аминогруппу в форме ацетил-КоА с помощью соответствующих трансфераз, в частности - ацетил-КоА

Другие реакции ацилирования
Не только уксусная кислота, но и другие органические кислоты способны превращаться в организме в активную форму, вступая во взаимодействие с КоА (жирные кислоты, карболовая кислота, бензойная кисло

Конъюгация с глюкуроновой кислотой
Глюкуроновая кислота (рисунок 11) имеет большое значение в механизме биотрансформации ксенобиотиков.

Конъюгация с сульфатом
Различные соединения, содержащие фенольные группы выделяются из организма в виде конъюгатов с сульфатом. Эндогенные сульфаты могут взаимодействовать также с ароматическими аминами. Процесс взаимоде

Конъюгация с глутатионом и цистеином
Органические вещества, содержащие в молекуле лабильные атомы водорода, галогенов и др., в организме могут взаимодействовать с SH-содержащими эндогенными соединениями: цистеином, ацетилцистеином, гл

Метилирование
Для многих веществ, процесс превращения завершается этапом метилирования молекулы. Метилированию могут подвергаться молекулы, содержащие гидроксильные, сульфгидрильные и аминогруппы в стру

Энзимы кишечной флоры
При участии кишечной флоры также возможен метаболизм химических соединений. Действие бактериальных энзимов сопровождается расщеплением продуктов ll фазы метаболизма, поступающих в кишечник с желчью

Факторы, влияющие на метаболизм ксенобиотиков
Способность органов и тканей метаболизировать ксенобиотики зависит от набора и активности энзимов, участвующих в процессе. В значительной степени активность энзимов является внутренней характеристи

Генетические факторы
Особи одного и того же вида живых существ порой значительно различаются по способности метаболизировать ксенобиотики. Это во многом детерминировано генетически. Так, в популяции людей выявляются ли

Пол и возраст
В опытах на лабораторных животных, в основном грызунах, показано, что половые гормоны принимают участие в регуляции активности энзимов метаболизма ксенобиотиков и прежде всего монооксигеназ. Так, в

Влияние химических веществ
Ксенобиотики, поступающие в организм, могут оказывать влияние на процессы метаболизма как самих этих веществ, так и других соединений, поступающих в организм одновременно или вслед за ними. Теорети

Индукция энзимов
Многие химические вещества, как эндогенные, так и поступающие из окружающей среды, обладают способностью усиливать синтез в организме энзимов биотрансформации ксенобиотиков. Этот феномен, получивши

Индукторы метаболизма
Многочисленные индукторы монооксигеназных систем можно отнести к одному из двух классов. Представителем первого класса является фенобарбитал, другие барбитураты, некоторые лекарства и инсектициды.

Механизмы индукции
Индукция предполагает синтез дополнительного количества того или иного энзима в органах и тканях de novo. Ингибиторы синтеза белка (пуромицин, этионин, циклогексимид), а также ингибиторы синтеза РН

Влияние индукторов на токсичность ксенобиотиков
Достаточно часто усиление метаболизма ксенобиотиков приводит к снижению их токсичности. Так, повторное введение фенобарбитала белым крысам самцам приводит к увеличению резистентности животных приме

Угнетение активности энзимов
Многие вещества способны угнетать активность ферментов, катализирующих метаболизм ксенобиотиков. Группа ингибиторов метаболизма включает: - конкурентные ингибиторы ферментов (альт

Активные метаболиты и их роль в инициации токсического процесса
Многие ткани являются мишенью для повреждающего действия продуктов метаболизма некоторых ксенобиотиков. Как правило, чем менее токсично вещество, то есть, чем большее его количество вызывает интокс

Выделение через легкие
Через легкие выделяются летучие (при температуре тела) вещества и летучие метаболиты нелетучих веществ. Выведение осуществляется в соответствии с теми же закономерностями, что и резорбция. Основным

Почечная экскреция
Почки - важнейший орган выделения в организме. Через почки выводятся продукты обмена веществ, многие ксенобиотики и продукты их метаболизма. Масса почек чуть менее 0,3% массы тела, однако, через ор

Фильтрация
Фильтрация осуществляется в почечных клубочках, при этом фильтрат преодолевает барьер, образованный эндотелием капилляров, формирующих клубочек, базальной мембраной и эпителием капсулы клубочка. Об

Канальцевая реабсорбция
Гломерулярный фильтрат с растворенными в нем ксенобиотиками переходит из боуменовой капсулы по извитым канальцам, петле Генле, дистальному отделу канальцев в собирательные трубки. Длина каждого из

Канальцевая секреция
Многие органические кислоты (пробеницид, глюкурониды, салициловая кислота, пенициллин и т.д.) быстро переходят из крови в мочу. В основе быстрого переноса таких соединений в просвет почечных каналь

Совместное действие механизмов почечной экскреции
Количество отфильтрованного вещества в единицу времени можно рассчитать по формуле: GFR Cp = V Cn , где GFR - скорость гломерулярной фильтрации (мл/мин)

Выделение печенью
В отношении ксенобиотиков, попавших в кровоток, печень выступает и как орган экскреции и как основной орган их метаболизма. Печень выделяет химические вещества в желчь, причем не только экзогенные,

Выделение через кишечник
С экскрементами вещество или его метаболит выделяются в следующих случаях: а) в результате неполного всасывания в желудочно-кишечном тракте; б) в результате билиарной экскреции бе

Другие пути выведения
Некоторое практическое значение имеет выведение веществ с молоком кормящих матерей и секретом потовых, сальных, слюнных желез. Как правило, в основе появления токсиканта в секрете желез лежит механ

Скорость элиминации. Константа скорости элиминации. Время полуэлиминации
Как указывалось ранее, в понятие элиминации включаются все процессы, приводящие к снижению содержания чужеродного вещества в организме. Для количественной характеристики элиминации прибегают к пров

Объем распределения.
Представление зависимости концентрации вещества в крови от времени в полулогарифмических координатах (рисунок 2) позволяет расширить информацию об особенностях токсикокинетики вещества, введенного

Клиаренс
Под клиаренсом понимают условный объем плазмы крови (мл), который полностью освобождается от находящегося в ней ксенобиотика в единицу времени. По Досту (Dost) все процессы, участвующие в элиминаци

Соотношение между значениями клиаренса, объема распределения и времени полувыведения вещества
Клиаренс - характеристика скорости элиминации ксенобиотика. Независимой от клиаренса является величина объема распределения. Она определяется способностью веществ растворяться в воде, липидах, связ

Компартменты
Под компартментом в количественной токсикокинетике понимают некий гипотетический объем жидкости организма, в котором, в соответствии с едиными количественными характеристиками, "растворяется&q

Однокомпартментная модель
При описании токсикокинетических процессов с помощью этой модели исходят из допущения, что вещество, попав в организм, полностью распределяется в едином пространстве, равном по величине объему расп

Моделирование поведения ксенобиотика при однократном внутривенном введении
В этой модели делается допущение, что вещество, быстро введенное внутривенно, мгновенно и равномерно распределяется в жидкостях и тканях организма. Под "организмом" понимают некий компарт

Моделирование поведения ксенобиотика с параллельными путями выведения
Помимо выведения вещества через почки (u) возможно выведение и другими органами, например печенью (G), что приводит к более быстрому снижению его содержания в крови. Полагают, что оба процесса выве

Моделирование поведения ксенобиотика полностью резорбирующегося из места введения
Как правило, токсикант поступает в организм не путем внутривенного введения, а в результате резорбции через легкие, кожу, желудочно-кишечный тракт, из подкожного или внутримышечного депо. При модел

Многокомпартментные модели
Однокомпартментная модель не учитывает физиологические особенности организма, поэтому предположили, что с увеличением числа компартментов, принятых в математической модели кинетики токсиканта, можн

Нелинейные токсикокинетические процессы
Модели, рассматривавшиеся выше, основаны на представлении, согласно которому скорость процессов, зависит только от концентрации веществ в объеме распределения (крови) V = f(с), а динамика концентра

Нелинейная однокомпартментная модель распределения с ограниченным характером процесса элиминации
Если установлено, что процесс элиминации ксенобиотика подчиняется уравнению Михаэлиса-Ментен, это свидетельствует о его насыщаемости: С* = - Vmax C /(KM + C) = - K

Физиологические токсикокинетические модели
Для конкретизации токсикокинетических исследований и оценки состояния организма после контакта с токсикантом порой важно представлять реальные характеристики движения веществ в органах и тканях. Но

Генетически обусловленные особенности реакций организма на действие токсикантов
Информация, заключенная в молекулах хромосомной и экстрахромосомной ДНК определяет морфологические, физиологические и биохимические особенности каждой клетки, которые реализуются в ходе её развития

Межвидовые различия
При изучении токсичности веществ на разных видах лабораторных животных, как правило выявляются определенные различия. Для некоторых веществ, например гликозидов (строфантин), фторацетата эти различ

Распределение
Часто одно и тоже вещество по-разному распределяется в организмах представителей различных видов. Так, объем распределения пропранолола (в пересчете на 1 кг массы тела) у человека составляет 3,62,

Биотрансформация
Видовые различия характеристик биотрансформации ксенобиотиков по большей части носят количественный, реже качественный характер. Существует обратная связь между массой тела животного и скоростью фе

Экскреция
Установлено, что видовые различия в чувствительности к веществам слабо метаболизируемым в организме могут быть обусловлены существенными различиями в скорости их выведения. Особенно это касается кс

Связывание с рецептором
Первичная структура и конформация рецепторов, взаимодействующих с ксенобиотиками, тем более различаются у представителей различных видов, чем дальше отстоя друг от друга эти виды в филогенезе. В эт

Эффекторные реакции
Строение, физиология, биохимия живых существ, принадлежащих различным классам организмов, глубоко различны. Эти различия носят не только количественный, но и качественный характер, не смотря на изв

Генетические особенности личности
Токсичность ксенобиотиков для различных людей колеблется в достаточно широких пределах. Эти колебания обусловлены внутривидовой изменчивостью. В основе изменчивости лежат генетические особенности о

Различия связанные с полом
Наиболее отчетливо выражены различия в чувствительности самцов и самок к токсикантам у грызунов. Однако выявляемые закономерности справедливы для других млекопитающих и человека. Основная причина ф

Возрастные различия
В процессе индивидуального развития человека и животных выделяют эмбриональный, фетальный, неонатальный, перинатальный, а также периоды созревания, зрелого возраста и старости. Чувствительность орг

Влияние беременности
Во время беременности изменяются многие параметры организма: масса тела, соотношение объемов интра- и экстрацеллюлярной жидкости, содержание жировой ткани, скорость эвакуации желудочного содержимог

Питание
Количество и качество потребляемой пищи оказывают сложное влияние на чувствительность человека и животных к токсикантам. У лиц, находящихся на диете богатой белками, но бедной углеводами период пол

Условия содержания экспериментальных животных
В условиях эксперимента удалось установить, что токсичность веществ зависит от того, содержатся ли они изолированно или группой. Токсичность некоторых веществ, действующих на ЦНС, при изолированном

Периодические изменения чувствительности к токсикантам
Многие биологические процессы, такие как синтез ДНК, РНК, белков, нейромедиаторов, активность энзимов, параметры гемодинамики, рН мочи, количество электролитов в моче, температура тела, количество

Циркадные ритмы
Циркадными, называются суточные колебания показателей жизнедеятельности, обусловленные генетическими механизмами и выявляемые даже на клеточном уровне. У различных видов живых существ характер суто

Температура окружающего воздуха
Скорость течения различных биологических процессов изменяется в зависимости от изменения температуры не одинаково. Температурный коэффициент Q10 показывает на сколько меняется скорость т

Толерантность
В ряде случаев при повторном введении действующей дозы отмечается понижение чувствительности организма к веществу. Этот феномен обозначается, как "толерантность". Толерантность возникает

Виды толерантности
В основу классификации различных форм толерантности могут быть положены разные принципы. По скорости её формирования выделяют: - острую форму (тахифилаксия) - возникает после однократного

Ослабление резорбции
Повторное воздействие токсикантов может приводить к изменению свойств барьерных тканей (кожи, слизистой оболочки ЖКТ, дыхательных путей) и, в итоге, ослаблению резорбции. Например, толеран

Усиление метаболизма ксенобиотиков
Многие вещества являются индукторами энзимов (см. выше), участвующих в метаболизме ксенобиотиков. Эти энзимы обладают слабой субстратной специфичностью и потому индукторы, как правило, усиливают би

Усиление экскреции.
При повторном введении веществ, активно выводящихся через почки, нередко отмечается усиление этого процесса. Так, значительно повышается, при повторном приеме, почечное выделение парааминогиппурово

Изменение рецепторов и реактивных систем
Для большого количества ксенобиотиков толерантность формируется вследствие количественных и качественных изменений рецепторов или связанных с ними реактивных систем. Следует выделить следующие прич

Истощение запасов нейромедиаторов
Если к раствору, которым перфузируют препарат изолированного уха кролика добавлять эфедрин в постоянной концентрации, то через некоторое время, прессорный эффект вещества исчезает. Аналогичный эффе

Тахифилаксия
Тахифилаксией называется явление развития толерантности к веществу, вводимому в действующей дозе, уже после однократного контакта с ним. Формирование тахифилаксии - дозо-зависимый феномен.

Хроническая форма толерантности
Если толерантность развивается в результате длительного действия ксенобиотика, говорят о хронической форме. Классическим примером является постепенное снижение чувствительности к наркотическим анал

Химическая зависимость
Повторный контакт с химическим веществом может привести к зависимости от него. Наиболее частой формой зависимости является лекарственная зависимость, наиболее часто развивающаяся в отношении психот

Физическая зависимость
Физическая или соматическая зависимость от вещества связана со структурно-функциональными изменениями ЦНС, которые при внезапной отмене препарата проявляются в форме синдрома отмены или абстиненции

Механизм химической зависимости
В настоящее время механизмы формирования химической зависимости изучены не достаточно. На основе многочисленных клинических и экспериментальных исследований установлено, что в основе явления, как п

Привыкание
Толерантность, пристрастие, зависимость к токсиканту не следует смешивать с явлением привыкания к веществу. ВОЗ определяет привыкание как стремление к приему вещества без отчетливой тенденции к раз

Хроническое отравление
Хроническим называется отравление, развивающееся в результате длительного воздействия токсиканта, как правило, в дозах, не вызывающих проявлений токсического процесса при однократном поступлении в

Взаимодействие в период аппликации
В ряде случаев взаимодействие веществ происходит уже в период их аппликации, при этом образуются продукты с иными свойствами. Этот вариант взаимодействия называется псевдокоергизм. Наибольшее внима

Токсикокинетические механизмы коергизма.
Концентрация веществ в тканях пропорциональна содержанию их в крови и определяется соотношением скоростей поступления и оттока. В этой связи вещество "В" может влиять на токсикокинетику в

Взаимодействие веществ при резорбции
Наиболее хорошо изучено взаимодействие веществ при их энтеральном поступлении. Частым примером рассматриваемой формы взаимодействия является влияние алкоголя на всасывание химических веществ. В осн

Модификация связывания белками плазмы крови
Вещества существенно различаются по их способности связываться белками плазмы крови. От этого во многом зависят особенности их распределения в организме и токсичность. Так, многие фосфорорганически

Изменение свойств тканей
Под влиянием многих химических веществ изменяется кровоснабжение тканей и органов, проницаемость биологических барьеров, электрический потенциал клеток, конформация макромолекул и т.д., то есть сво

Мобилизация биологически активных веществ
Одна из форм распределения ксенобиотика в организме - депонирование. Целый ряд веществ, особенно металлы (ртуть, свинец, мышьяк, кадмий, стронций и т.д.), некоторые жирорастворимые соединения (ДДТ,

Коергизм в процессе биотрансформации
Часто коергизм является следствием взаимного влияния ксенобиотиков на процессы биотрансформации. Можно выделить следующие общие механизмы такого действия: - конкурентное и неконкурентное у

Угнетение активности энзимов, метаболизирующих ксенобиотики
Угнетение активности энзимов I и II фаз метаболизма ксенобиотиков приводит к изменению их биологической активности, продолжительности действия. Реакции I фазы метаболизма.

Повреждение органов и тканей, метаболизирующих ксенобиотики
Целый ряд известных токсикантов (фосфор, четыреххлористый углерод, дихлорэтан, тиоацетамид и др.) помимо жирового перерождения печени вызывают и поражение энзиматических систем, участвующих в метаб

Индукция энзимов, метаболизирующих ксенобиотики
Некоторые ксенобиотики могут увеличивать активность энзимов, участвующих в биотрансформации других чужеродных соединений, т.е. выступать в роли индукторов (см. выше). Как правило, к числу индукторо

Канальцевая реабсорбция
При угнетении салюретиками канальцевой реабсорбции воды и электролитов уменьшаются предпосылки, в силу снижения концентрации, для обратной диффузии токсикантов и их метаболитов из первичной мочи в

Канальцевая секреция
Канальцевая секреция представляет собой активный процесс, при котором коергисты могут выступать в качестве конкурентов за системы переносчиков в почках. Система переноса органических анионов обеспе

Печеночная экскреция
Гепатоциты, как и клетки почечного эпителия, с помощью низкоселективных транспортных систем, ускоряют выведение из печени в желчь некоторых анионов и катионов. Здесь также существует возможность ко

Взаимодействие на уровне рецепторов
Коергизм веществ на уровне рецепторов может реализовываться следующими способами: - путем действия на один и тот же рецептор биологически активной макромолекулы (энзима, ионного канала, ре

Конкуренция за рецепторы одного типа
Принципиально возможные механизмы конкуренции двух токсикантов на уровне рецептора представлены на рисунке 3.

Коергизм при действии ксенобиотиков на разные участки рецепторной молекулы
Низкомолекулярные вещества способны атаковать биологически активные протеины различными способами. Образуемые при этом связи токсиканта и протеина являются как специфическими (с активным центром эн

Коергизм на уровне реактивных систем и целостного организма
Часто в основе коергизма лежит взаимодействие токсикантов с различными структурами, связанными функционально. Выраженность этой функциональной связи может быть различной. Это могут быть биомолекулы

Представление данных, получаемых в ходе изучения явления коергизма
Для представления данных отражающих коергизм веществ можно использовать различные диаграммы, например комбинационный квадрат (Loewe). Изучается соотношение доз коергистов "А" и &

Токсикологическое значение явления коергизма
1. На производстве, в быту или в природных условиях на человека, как правило, одновременно действует большое количество химических веществ. Поскольку существует явление коергизма практически никогд

История вопроса.
В старой медицине многие болезни рассматривались как отравления, а потому эффективные против них лекарства называли антидотами. Под ядом обычно понимали всё, что вызывает болезни, в том числе неизв

Характеристика современных антидотов
По сути, любой антидот - химическое вещество, предназначенное для введения до, в момент или после поступления токсиканта в организм, то есть коергист, обязательным свойством которого должен быть ан

Краткая характеристика механизмов антидотного действия
Обычно выделяют следующие механизмы антагонистических отношений двух химических веществ: 1. Химический; 2. Биохимический; 3. Физиологический; 4. Основанный на мо

Антидоты, связывающие токсикант (химические антагонисты)
В ХIX в полагали, что сфера действия противоядий, основанных на способности химически взаимодействовать с токсикантом, ограничена. Считалось, что антидоты могут оказывать пользу только в тех случая

Прямое химическое взаимодействие
Антидоты этой группы непосредственно связываются с токсикантами. При этом возможны: - химическая нейтрализация свободно циркулирующего токсиканта; - образование малотоксичного ком

Опосредованная химическая нейтрализация.
Некоторые вещества не вступают в химическое взаимодействие с токсикантом при введении в организм, но существенно расширяют ареал "немых" рецепторов для яда. К числу таких противо

Биохимический антагонизм
Токсический процесс развивается в результате взаимодействия токсиканта с молекулами (или молекулярными комплексами) - мишенями. Это взаимодействие приводит к нарушению свойств молекул и утрате ими

Физиологический антагонизм.
Механизм действия многих токсикантов связан со способностью нарушать проведение нервных импульсов в центральных и периферических синапсах (см. разделы "Механизм действия", "Нейротокс

Противоядия, модифицирующие метаболизм ксенобиотиков.
Как известно многие ксенобиотики подвергаются в организме метаболическим превращениям. Как правило, это сопряжено с образованием продуктов, значительно отличающихся по токсичности от исходных вещес

Применение противоядий
Поскольку любой антидот это такое же химическое веществ, как и токсикант, против которого его применяют, как правило, не обладающее полным антагонизмом с токсикантом, несвоевременное введение, неве

Разработка новых антидотов.
Поводом для создания эффективного противоядия является либо случайное обнаружение факта антагонизма веществ, либо целенаправленное и глубокое изучение механизмов действия токсиканта, особенностей е

Оценка эффективности.
Оценка эффективности средств, рассматриваемых как потенциальные антидоты, может быть проведена в экспериментах in vitro и in vivo. 3.1.1. Опыты in vitro

Создание комплексных антидотных рецептур
В некоторых случаях к разрабатываемым антидотам предъявляются особо жесткие требования. Так, антидоты боевых отравляющих веществ должны обладать не только высокой эффективностью, но прекрасной пере

Внедрение новых антидотов в практику
Перед внедрением новых средств в клиническую практику следует провести их детальное сравнение с существующими. Показателями сравнения являются: эффективность, переносимость, удобство использования,

Перспективы
К настоящему времени изучены токсикометрические, токсикокинетические и токсикодинамические характеристики десятков тысяч ксенобиотиков. Токсикологами постоянно "отслеживается" роль химиче

Иммунокомпетентные клетки
Центральное место в иммунных реакциях организма принадлежит лимфоцитам (рисунок 1). Лимфоциты распознают специфические антигены или антигенные детерминанты. Их обозначают также как антиген-чувствит

Органы и ткани иммунной системы
Тимус. Тимус представляет собой двудолевое образование, локализующееся у основания сердца. При рождении орган человека весит около 10 - 15 грамм, в подростковом возрасте - 30 - 40

Особенности функционирования системы
С помощью иммунной системы организм выявляет "чужеродные", не свойственные ему, высокомолекулярные, субклеточные и клеточные элементы (антигены) и формирует реакции, направленные на их св

Иммунокомпетентность
Иммунокомпетентность это функциональное состояние иммунной системы, при котором обеспечивается эффективная защита организма от инфекционных агентов и опухолевых клеток, а также химических веществ,

Понятие иммунотоксичности
Иммунотоксичность можно определить, как свойство ксенобиотиков вызывать нарушения функций организма, проявляющиеся неадекватными иммунными реакциями. Неадекватными могут быть реакц

Иммуносупрессия
Иммуносупрессия - это подавление иммунного ответа организма на антигены. Свойствами иммуносупрессоров обладают многочисленные ксенобиотики, нарушающие процессы клеточного деления,

Иммуносупрессия и инфекция
У лиц с нарушенным иммунным статусом нередко развивается оппортунистическая инфекция. Установлено, что такие экополлютанты, как озон, оксиды азота, диоксид серы существенно повышают чувствительност

Иммуносупрессия и канцерогенез
В настоящее время получены данные, подтверждающие связь между повреждением иммунной системой (иммуносупрессия, иммунодефицит) и вероятностью развития некоторых видов неоплазмы (см. раздел "Хим

Характеристика состояния гиперчувствительности
Нарушения, сопровождающиеся гиперчувствительностью к антигенам, являются наиболее частой формой проявлений иммунотоксичности у человека. Гиперчувствительность можно определить как избыточную по инт

Псевдоаллергические реакции
Различные химические вещества, действуя на организм, порой вызывают состояния, чрезвычайно напоминающие аллергические реакции и проявляющиеся широким спектром нарушений от кожной сыпи до астмы и ан

Иммуногены и аллергены
Молекулы, вызывающие иммунный ответ организма, называются иммуногенами. Идентификация иммуногена может быть осуществлена с помощью моноклональных антител. Как правило, аллергия развивается при дейс

Аутоиммунные процессы
Распознавание "чужеродного" и формирование биологической реакции на него - основная функция иммунной системы. Для того, чтобы реагировать на чужое, иммунная система должна распознавать и

Бериллий.
Хотя бериллий был открыт еще в 18 веке, его токсическое действие обнаружилось лишь в ХХ. В 1945-50 годах в США регистрировались эпидемические вспышки острых и хронических интоксикаций бери

Определение иммунотоксичности ксенобиотиков
Стратегия определения иммунотоксичности состоит в последовательном изучении в эксперименте состояния элементов иммунной системы (от клетки до целостного организма), в условиях воздействия испытуемо

Выявления иммунотоксических эффектов
Не смотря на многочисленные данные об иммунотоксических свойствах веществ, получаемых на экспериментальных животных, в силу сложности экстраполяции, сведения о влиянии веществ на человека порой про

Оценка иммунологического статуса
Для оценки статуса человека с предполагаемой иммунной патологией Иммунологическая секция ВОЗ рекомендует использовать тесты, представленные на таблице 11. Таблица 11. Тесты клинического им

Замещение нуклеотида
Минимальным повреждением ДНК является замещение нуклеотида или нуклеотидной пары, называемое точечной мутацией. Если нуклеотид замещается на другой нуклеотид того же типа, например, пуриновое основ

Выпадение или включение дополнительного нуклеотида
Выпадение или включение дополнительного нуклеотида в структуру ДНК кардинальным образом изменяет триплетный код, с помощью которого храниться информация о последовательности аминокислот в синтезиру

Репарация ДНК
Клетки обладают способностью корректировать и устранять повреждения ДНК. Вследствие этого лишь небольшое число мутаций, инициированных токсикантом, сохраняется в процессе репликации молекулы. Однак

Хромосомные аберрации
Для обозначения процессов, приводящих к делеции (выпадению), перестройке фрагментов хромосом или появлению дополнительных хромосом, которые выявляются с помощью световой микроскопии клеток, использ

Условия действия мутагенов на клетки
Все клетки организма находятся в одной из фаз клеточного цикла: 1. Покоя (фаза G0): клетка функционирует или покоится (большинство соматических неделящихся клеток); 2.

Исследования в опытах на прокариотах. Тест Эймса
В основе теста, разработанного Брюсом Эймсом, лежит способность мутагенов вызывать обратную мутацию измененного штаммаSalmonella typhimurium, неспособного к биосинтезу гистидина. Микроорганизмы дан

Исследования в опытах на клетках млекопитающих
Первоначально считалось, что культуры клеток млекопитающих будут идеальным объектом для изучения мутагенной активности токсикантов. Однако в процессе работы, вскрылись обстоятельства поколебавшие э

Оценка индукции синтеза ДНК клетками млекопитающих
Принцип метода заключается в оценке интенсивности репаративных процессов, инициируемых химическим повреждением ДНК. В основе метода лежит авторадиографическое определение степени инкорпорации мечен

Исследование ковалентного связывания токсикантов
Поскольку многие мутагены способны образовывать ковалентные связи с пуриновыми и пиримидиновыми основаниями молекул ДНК (аддукты ДНК), выявление аддуктов ДНК является прямым свидетельством генотокс

Изучение хромосомных аберраций
Хромосомные аберрации, вызванные действием химических веществ, могут быть выявлены путем окрашивания клеток и последующего изучения с помощью обычного светового микроскопа. Для исследования могут и

Краткая характеристика канцерогенов
В настоящее время около 20 веществ, достаточно широко используемых в промышленности, отнесены к числу канцерогенов для человека (однако этот список постоянно увеличивается). Кроме того, убедительно

Стадии химического канцерогенеза
Индукция опухолевого роста химическими веществами - сложный, многостадийный процесс, включающий взаимодействие факторов окружающей среды и эндогенных факторов. Особенностью химического канцерогенез

Промоция опухолевого роста. Процесс, в ходе которого инициированная клетка завершает неопластическую трансформацию называется промоцией.
Промоторы, это вещества, в строгом смысле слова, не являющиеся канцерогенами, однако их воздействие необходимо для развития опухоли. Полагают, что промоторы осуществляют экспрессию трансформировавш

Механизмы действия
Как сказано выше, к числу канцерогенов в настоящее время причисляют любое вещество, которое ускоряет развитие опухолей или увеличивает частоту появления новообразований в популяции. В этой связи ка

Коканцерогены
Коканцерогенами называются вещества, которые существенно увеличивают вероятность формирования новообразований, действуя на организм или совместно с канцерогенами, или до него. Пром

Метаболизм и биоактивация канцерогенов
Большое значение для развития опухолевого роста при действии ксенобиотиков имеют особенности их метаболизма (рисунок 5).

Бутадиен
1,3-бутадиен - бесцветный газ, используемый в производстве резины. Ранние исследования, выполненные на экспериментальных животных, указывали на малую токсичность вещества как при остром, так и хрон

Экспериментальная оценка
Экспериментальная оценка канцерогенной активности вещества - сложное многоэтапное исследование. Как правило, оно выполняется в опытах in vitro и in vivo в ходе подострого или хроничес

Эпидемиологические исследования
Окончательное суждение о канцерогенности вещества для человека является результатом масштабных эпидемиологических исследований. Как правило, утверждение признается справедливым лишь при выполнении

Проблемы оценки риска
Принципиальная задача оценки риска химического канцерогенеза - установление его количественных характеристик для лиц, контактирующих с малыми дозами потенциальных канцерогенов. Как указывалось ране

Математические модели, описывающие зависимость доза - эффект
Вероятность обнаружения опухоли данного вида в обследуемой группе, не контактировавших с канцерогеном особей всегда выше нуля. Это связано с действием разнообразных факторов окружающей среды, прово

Процедуры определения пороговых уровней риска
После экспериментального нахождения параметров зависимости "доза-эффект" в условиях действия больших доз канцерогена (коэффициентов а, b и т.д.) определение пороговых уровней риска химиче

Краткая характеристика анатомо-физиологических особенностей репродуктивных органов
Женская репродуктивная система состоит из 4 анатомических образований, функция которых регулируется гормонами, продуцируемыми гипофизом, яичниками, плацентой. Яичники пред

Развитие плода
Оплодотворение происходит в фаллопиевых трубах и состоит в слиянии женской половой клетки и сперматозоидов. Оплодотворенное яйцо переносится в матку, где имплантируется в эндометрий (период имплант

Особенности действия токсикантов на репродуктивные функции
Точно выявить механизм, лежащий в основе репродуктивных нарушений, порой практически невозможно, так как ксенобиотик мог подействовать либо на обоих родителей, либо только на одного из них, либо на

Тератогенез
Дословный перевод термина "тератогенез" означает "рождение монстров", от греческого teras, означающего "монстр". В древние времена полагали, что рождение деформированн

Закономерности тератогенеза
В ходе изучения тератогенеза, удалось выявить ряд закономерностей, среди них основными являются: 1) токсикокинетические; 2) генетической предрасположенности; 3) критических периодов чувствительност

Особенности токсикокинетики тератогенов
Попав в организм матери, вещества распределяются в соответствии с токсикокинетическими свойствами ксенобиотика. Беременность существенно влияет на характер распределения (снижается связывание токси

Механизмы действия тератогенов
Тератогенный эффект развивается при действии токсиканта в определенной дозе, на чувствительный орган, в определенный период его формирования. Выявлено множество механизмов, посредством которых ксен

Талидомид
Талидомид (рисунок 2) один из активнейших, известных, тератогенов для человека. Ри

Полигалогенированные бифенилы (ПГБ)
Эта группа химических веществ включает более ста наименований. Соединения используются в качестве изолирующих жидкостей, теплообменников, химических добавок к маслам и т.д. Как правило, коммерчески

Органические растворители
В условиях опыта на лабораторных животных удается выявить неблагоприятное действие растворителей на репродуктивную функцию. В этой связи органические растворители рассматриваются как тератогены для

Цитостатики
Средства химеотерапии новообразований обладают свойствами тератогенов, если их действие приходится на ранний период беременности. Среди установленных тератогенов: алкилирующие агенты (бисульфан, хл

Экспериментальное изучение
Оценить токсическое действие веществ на репродуктивные функции чрезвычайно сложно, поскольку многообразны и сложны механизмы и условия, приводящие к неблагоприятному эффекту. В настоящее время разр

Оценка риска поражения
Теоретически оценить риск нарушения репродуктивной функции можно только с учетом дозовых нагрузок ксенобиотика, поскольку, как сказано выше, практически отсутствуют вещества безопасные при любых ус

Анализируемые показатели
Неблагоприятное действие химических веществ на репродуктивную функцию человека, а также частоту и распространённость нарушений и дефектов развития плода и ребенка, вызываемых токсикантами, изучаетс

Методы сбора информации
Существует несколько методов сбора данных, позволяющих оценить влияние химических факторов окружающей среды на репродуктивную функцию человека. В частности, проводятся корреляционные исследования с

Контроль тератогенеза в популяции
Важным элементом деятельности медицинской службы является контроль тератогенного действия ксенобиотиков в человеческих популяциях. Этот контроль может осуществляться в соответствии с программами, у

Краткая характеристика химических и физико-химических свойств токсикантов
Раздражающее действие присуще огромному количеству веществ. К числу наиболее известных относятся галогены, альдегиды, кетоны, пары кислот, ангидриды кислот и др. Выраженность эффекта в каждом конкр

Патогенез токсического эффекта
Нервные структуры воспринимают, передают, отражают действие раздражающих веществ на покровные ткани. Первичным звеном в этой цепи являются чувствительные нейроны языкоглоточного, тройнично

Основные проявления раздражающего действия
Наиболее подробно проявления поражений раздражающими веществами изучены на примере действия отравляющих веществ. При воздействии на человека аэрозоля CS с размером частиц в среднем 1 мкм в

Экспериментальное выявление раздражающего действия ксенобиотиков
Наиболее широко применяемым тестом на выявление раздражающего действия ксенобиотиков на орган зрения является тест Дрейза (Draize). Эксперимент выполняется на лабораторных животных, предпочтительно

Контактные химические дерматиты
Обычно химические дерматиты подразделяют на неаллергические контактные, аллергические контактные, неиммунологические везикулярные сыпи. С точки зрения профессиональной патологии наибольшег

Аллергические дерматиты
Особую группу патологических состояний составляют химические контактные дерматиты аллергической природы. Патология проявляется лишь после более или менее продолжительного контакта с соответствующим

Фотодерматиты
Ряд веществ обладают способностью повышать чувствительность кожных покровов к солнечным лучам. Такие вещества называются фотосенсибилизаторами. Они проявляют токсическое действие как при непосредст

Токсидермии
Токсидермии развиваются при системном действии токсикантов. Отдельные вещества вызывают поражение кожи у всех лиц, контактирующих с ними (облигатные токсиканты), другие - лишь у людей, с повышенной

Поражение органическими растворителями
В качестве органических растворителей наиболее часто используют вещества, относящиеся к одной из следующих групп: алифатические углеводороды, ароматические углеводороды, галогенированные алифатичес

Поражения мышьякорганическими соединениями
В этой группе наиболее хорошо изучены соединения, рассматривавшиеся ранее, как возможные боевые отравляющие вещества (БОВ), в частности, метиларсиндихлорид, этиларсиндихлорид, фениларсиндихлорид, х

Поражение сернистым ипритом
Дихлордиэтилсульфид (иприт) со времен первой Мировой войны находился на снабжении армий многих стран мира в качестве БОВ. Это маслянистая липофильная жидкость, плохо растворимая в воде, с запахом г

Поражение альдегидами
Альдегиды, это вещества, содержащие в молекуле карбонильную группу -НСО, способные к восстановлению до спиртов или окислению до кислот. Среди альдегидов наибольшей альтерирующей способностью облада

Поражение эпоксидными смолами
Система эпоксидных смол, как правило, состоит из собственно смолы, отвердителя и реактивного агента. Иногда в систему добавляют красители, поластификаторы, стекло и т.д. Эпоксидные смолы широко исп

Поражение щелочами
Неорганические щелочи это такие соединения как гидраты окиси натрия, калия, лития, бария, кальция. Эти вещества широко используют в быту и на производстве в качестве моющих средств, очистителей дре

Поражение хромовой кислотой
Хромовая кислота широко используется в промышленности. Из различных валентных состояний хрома (+2; +3; +6) наиболее токсичны соединения шестивалентного хрома. Помимо действия как кислоты (изменение

Поражение плавиковой кислотой.
Плавиковая кислота (HF) - бесцветная летучая жидкость или пар с раздражающим едким запахом. Широко применяется в промышленности и быту в качестве чистящего средства. Вещество обладает выраженными к

Оценка дерматотоксичности ксенобиотиков в эксперименте
Особое значение выявление дерматотоксичности имеет при определении переносимости веществ, специально предназначающихся для нанесения на кожу: косметики, детергентов, лекарственных средств и т.д.

Краткая характеристика морфологии дыхательной системы
Выделяют три основных отдела дыхательной системы: назофарингиальный (полость носа, ротовая полость, гортань), трахеобронхиальный (трахея, первичные бронхи, вторичные бронхи), лёгочный (терминальные

Назофарингиальный отдел
Назофарингиальная область дыхательной системы человека начинается в носовых ходах, продолжается горизонтально, изгибается, под углом 900, постепенно переходит в фаринголарингиальный отде

Трахеобронхиальный отдел
Этот отдел воздухоносных путей является вторым эшелоном защиты лёгких от токсикантов. Дыхательные пути покрыты реснитчатым эпителием. Секреторные клетки, бокаловидные клетки, щеточные клетки, клетк

Паренхима легких
Паренхима лёгких образована огромным количеством альвеол. Альвеолы представляют собой тонкостенные микроскопические полости, открывающиеся в альвеолярный мешочек, альвеолярный ход или непосредствен

Вентиляция
Вентиляция лёгких - это совокупность физиологических актов, направленных на продвижение воздуха по воздухоносным путям к терминальным респираторным единицам (ацинусам), где и осуществляется газообм

Легочные объемы
Максимальное количество воздуха, содержащегося в лёгких и дыхательных путях человека, которое может быть заменено на воздух окружающей среды при совершении максимального вдоха и выдоха, называется

Рефлексы, влияющие на дыхание
Рефлексы верхних дыхательных путей. В 1870 Кречмер описал рефлекс, формирующийся при раздражении (в том числе химическими веществами, например, аммиаком) верхних дыхательных путей.

Механизмы регуляции тонуса бронхов
Тонус гладкомышечных волокон бронхов определяет диаметр последних. Бронходилятация наблюдается при активации

Газообмен
Газообмен осуществляется в ацинусах легких. Упрощенно суть процесса состоит в диффузии кислорода из альвеолярного воздуха в кровь и диоксида углерода из крови в альвеолярный воздух. Движущей силой

Метаболизм ксенобиотиков и биологически активных веществ
Помимо осуществления внешнего дыхания респираторная система имеет и ряд других важных функций. Среди них: продукция и секреция гормонов и медиаторов, биотрансформация и выведение из организма ксено

Депонирование и клиаренс ксенобиотиков в легких
Ксенобиотики попадают в легкие в форме газов и аэрозолей. Их дальнейшая судьба зависит, в основном, от свойств и агрегатного состояния и может схематически быть представлена следующим образом (рису

Основные формы патологии дыхательной системы химической этиологии
Поражение органов внешнего дыхания токсикантами может быть следствием непосредственного их действия в форме газов и аэрозолей на дыхательную систему (подавляющее большинство токсичных агентов), либ

Острые ингаляционные поражения
Многие газы и аэрозоли вызывают острые токсические процессы в дыхательной системе. В основе этих процессов лежат либо гиперактивация физиологических защитных реакций организма на действие чужеродны

Локализация поражения
Как уже указывалось ранее, место действия токсиканта в дыхательной системе определяется его концентрацией, размером частиц (для аэрозолей), растворимостью в воде. Нередко вид токсиканта, вызвавшего

Верхние дыхательные пути
Патологические состояния, связанные с острым действием токсикантов на верхние дыхательные пути приводят к двум видам последствий: а) возбуждению рефлексов в силу раздражения нервных окончаний обоня

Глубокие дыхательные пути
Проявления поражения - от слабо выраженных явлений легкого воспаления (гиперемия слизистой, лёгкий отек и т.д.), до выраженных некротических изменений слизистой воздухоносных путей (псевдомембраноз

Пневмонии
В группу острых пневмоний химической этиологии входят различные, чаще комбинированные поражения, морфологические особенности которых определяются особенностями токсического действия ксенобиотиков.

Отек легких
Характерной формой поражения легких токсикантами является отек легких. Суть патологического состояния - выход плазмы крови в стенку альвеол, а затем в просвет альвеолы и дыхательных путей. Отечная

Острая дыхательная недостаточность
Дыхательной недостаточностью называется состояние, при котором внешнее дыхание не обеспечивает оптимальный газообмен в покое и при нагрузке. При этом парциальное давление кислорода в крови падает н

Диагностика
Первым шагом на пути выявления лиц, подвергшихся острому воздействию токсикантов, является констатация самого факта воздействия. В тех случаях, когда этот факт очевиден (в лицо рабочему выброшена с

Оказание помощи
Все лица, доставляемые из очагов ингаляционного поражения различными токсикантами подлежат госпитализации сроком не менее, чем на сутки. Оказание неотложной помощи, помимо мероприятий, направленных

Паракват
Паракват является контактным неселективным гербицидам. В 1955 году его стали широко использовать в сельском хозяйстве. Основными поставщиками пестицида являются Китай, Тайвань, Италия, Япония, Вели

Хронические патологические процессы химической этиологии
Наиболее частыми формами токсического процесса, развивающегося при длительном профессиональном или экологическом действии пульмонотоксикантов, являются вяло текущие воспалительные процессы, гиперре

Аллергические и гиперреактивные заболевания легких
В норме иммунная система обеспечивает защиту легких от неблагоприятных воздействий, в том числе и токсикантов. Однако при воздействии некоторых ксенобиотиков ответ порой оказывается искаженным. При

Оценка пульмонотоксичности ксенобиотиков в эксперименте
Оценка пульмонотоксичности ксенобиотиков осуществляется в опытах на лабораторных животных. При этом необходимо четко определить условия воздействия изучаемых веществ (концентрация, продолжительност

Выявления пульмонотоксического действия профессиональных и экотоксикантов
Установление причинно-следственных связей между патологией дыхательной системы, выявляемой у обследуемого, и действием профессиональных неблагоприятных факторов химической природы, порой очень слож

Профессиональный анамнез
Если начало профессионального заболевания отсрочено, либо характер воздействия токсиканта трудно поддается анализу, врачу необходимо получить информацию о видах работы, выполнявшейся лицом, воздейс

Биологический мониторинг
Биологический мониторинг предполагает клинико-лабораторное обследование с привлечением рентгенографических, физиологических, иммунологических, химико-аналитических, морфологических и других методов

Обследование рабочего места
Важным этапом постановки диагноза является обследование врачом-специалистом рабочего места. В ходе обследования осуществляется осмотр производства, собираются сведения, недоступные в поликлинически

Гемопоез
Гемопоэзом называется процесс амплификации и дифференциации клеточных элементов крови, в ходе которого ограниченное количество стволовых клеток даёт начало более дифференцированным делящимся клетка

Нарушение функций гемоглобина
Одна из важнейших функций крови - транспорт кислорода от легких к тканям. Транспорт кислорода осуществляется двумя способами: - в форме соединения - гемоглобином; - в форме раство

Метгемоглобинообразование
В процессе жизнедеятельности железо гемоглобина постоянно окисляется, превращаясь из двухвалентной в трёхвалентную форму. Гемоглобин, железо которого трёхвалентно, называется метгемоглобином. Метге

Причины метгемоглобинообразования
Метгемоглобинемией называется состояние, при котором в крови определяется более 1% метгемоглобина. Метгемоглобинемия бывает врождённой и приобретённой. Приобретенная метгемоглобинемия развивается в

Врожденная метгемоглобинемия
Врожденная метгемоглобинемия может быть обусловлена синтезом в организме гемоглобина М. Гемоглобин М представляет собой изменённую молекулу гемоглобина, с необычным аминокислотным составом

Дапсон (4,4-диаминодифенилсульфон)
Дапсон - синтетический сульфон, структурно напоминающий сулфаниламиды (рисунок 4).

Нитриты
Эффект могут вызывать как органические, так и неорганические вещества, содержащие в молекуле нитрогруппы. Неорганические нитриты это соли азотистой кислоты (азотистокислый натрий - NaNO2

Проявления метгемоглобинемии
Выраженность симптомов зависит от содержания метгемоглобина в крови. Основным проявлением является цианоз кожных покровов и видимых слизистых. Цвет цианотичных участков кожи от синеватого до шокола

Лабораторная диагностика
Ряд простейших методических приёмов позволяет иногда выявить наличие метгемоглобина в крови. Если пигмента в крови более 15%, капля крови окрашивает фильтровальную бумажку в "шоколадный"

Принципы оказания помощи
Лечение острых интоксикаций метгемоглобинообразователями включает предотвращение дальнейшего поступления ксенобиотика в организм, оксигенацию крови, введение средств, превращающих метгемоглобин в г

Образование карбоксигемоглобина
Карбоксигемоглобин образуется при действии на организм монооксида углерода (СО), так называемого угарного газа, а также при отравлении карбонилами металлов, прежде всего никеля и железа (Ni(CO)

Токсиканты, вызывающие иммуноаллергические гемолитические анемии
парааминосалициловая кислота альфаметилдофа цефалоспорины хинидин хинин хлордиазепоксид хлорпромазин хлорпропамид дифенилгидантион фенацетин

Краткая характеристика некоторых токсикантов
3.1.2.1. Мышьяковистый водород (Арсин - AsH3) Арсин - бесцветный газ, без запаха. Используется в химическом синтезе, а также выделяется при зарядке аккумуляторн

Биомониторинг
Система биомониторинга воздействия арсина, стибина и других промышленных гемолитиков разработаны недостаточно, поскольку отсутствуют специфические проявления действия этих веществ в минимальных доз

Аплазия костного мозга
Острые и хронические отравления могут приводить к развитию апластических процессов в костном мозге. При этом, как правило, снижается содержание и эритроцитов, и лейкоцитов, и тромбоцитов, развивает

Панцитопения.
Основные признаки панцитопении: состояние слабости и усталости, развивающихся в следствие анемии; лихорадка, инфекционные осложнения, как результат нейтропении; кровотечения - последствия тромбоцит

Агранулоцитоз
При типичном агранулоцитозе доминирующим признаком является гранулоцитопения. В тяжелых случаях количество лейкоцитов снижается до 500 - 300 клеток в мм3 крови. Отмечается относительный

Лейкемии
3.3.1. Распространённость В США ежегодно регистрируется около 24000 новых случаев лейкемий, что составляет примерно 3% от общего количества новообразований. Острая миелоид

Диагноз
Достижения клеточной и молекулярной биологии привело к существенному увеличению числа классификационных подтипов миелоидных и лимфоидных лейкемий, основывающихся на фено- и генотипическом анализе.

Профессиональные воздействия и лейкемии
Целый ряд веществ рассматривается как потенциальные агенты, вызывающие лейкемии. В ряде случаев причинно-следственная связь между определённой профессиональной деятельностью и увеличением риска раз

Этиленоксид
Этиленоксид широко используют в качестве исходного продукта для целей химического синтеза, а также средства стерилизации различного оборудования. Интоксикации этиленоксидом случаются и в госпиталях

Эфиры гликолей
Эфиры гликолей используют для производства растворителей, лаков, красок, чернил, антифризов. Обычно их рассматривают как малотоксичные вещества. Имеются сообщения о гематотоксичности эфиров гликоле

Производные феноксиуксусной кислоты
Основными представителями этой группы веществ являются 2,4-дихлорфеноксиуксусная кислота и 2,4,5-трихлорфеноксиуксусная кислота. Эти широко используемые гербициды получили известность в годы войны

Мониторинг состояния системы крови лиц, работающих в условиях опасных производств
Мониторинг состояния здоровья работающих на опасных производствах должен быть постоянным, а применяемые методы пригодны для осуществления массовых обследований. Многие гематологи полагают, что для

Структурно-функциональная организация нервной системы
Нервная система - это сложная система, обеспечивающая межклеточное взаимодействие и контролирующая большинство функций организма. Движение, мышление, зрение, слух, деятельность сердца, дыхание и др

Нейроны
Основные функциональные элементы нервной системы - нейроны. Они отличаются от других клеток наличием отростков - дендритов и аксонов. Дендрит, это модифицированная часть нейрона, предназначенная дл

Синапсы
Межклеточные взаимодействия в нервной системе осуществляется через синапсы - пространства между окончанием аксона и возбудимой мембраной иннервируемой клетки (нейрона, мышечной, железистой клетки).

Глиальные клетки
Глиальные клетки представлены астроцитами, олигодендроцитами, клетками микроглии. Асторглия тесно ассоциирована с нервными клетками и выполняет роль стабилизатора среды, окружающей нейрон. Её значе

Цереброспинальная жидкость.
Цереброспинальная жидкость, секретируемая хориоидальным сплетением (клетки сплетения морфологически напоминают клетки эпителия почечных канальцев), омывает желудочки мозга и резорбируется ворсинкам

Энергетический обмен
Масса мозга составляет 2 - 3% от массы тела, однако количество протекающей через мозг крови составляет в покое около 15% от общего объема (50 - 60 мл/мин/100 г ткани); мозг потребляет около 25% пот

Мозговой кровоток
Кровоток обеспечивает снабжения мозга кислородом и субстратами, необходимыми для поддержания пластического и энергетического обмена, а также удаление из ткани мозга диоксида углерода, образующегося

Причины уязвимости нервной системы для токсикантов
Уязвимость нервной системы для повреждающего действия химических веществ обусловлена следующими обстоятельствами: - многие химические вещества легко проникают через ГЭБ, а также действуют

Нейротоксиканты
Нейротоксиканты, как и другие ксенобиотики попадают в организм ингаляционно, через рот или кожу. Ряд веществ могут действовать несколькими путями. Важнейшим условием прямого действия нейро

Механизмы действия нейротоксикантов
Развивающаяся патология является следствием воздействия токсикантов на возбудимые мембраны, механизмы передачи нервного импульса в синапсах, пластический и/или энергетический (гипоксия, ишемия) обм

Проявления нейротоксических процессов
Нейротоксический процесс проявляется в форме нарушений моторных, сенсорных функций, эмоционального статуса, интегративных функций мозга, таких как память, обучение. Часто нарушается зрение, слух, т

Судорожный синдром. Конвульсанты
Известно огромное количество веществ, как синтетических, так и естественного происхождения, способных провоцировать развитие судорожного синдрома у человека и экспериментальных животных. Многие из

Конвульсанты, активирующие возбуждающие процессы в ЦНС
К числу веществ, вызывающих судороги путем активации возбуждающих систем мозга, относятся соединения, непосредственно действующие на возбудимые мембраны нейронов, либо иными способами усиливающие п

Вещества, действующие на возбудимые мембраны и нарушающие механизмы ионного транспорта
Пентилентетразол (метразол) В серии производных тетразола от триметилентетразола до гептаметилентетразола, судорожная активность возрастает с увеличением числа метиленовых групп в молекуле

Вещества, активирующие холинэргические структуры мозга
Синаптические структуры, в которых медиаторную функцию выполняет ацетилхолин, обнаружены как в центральной нервной системе, так и на периферии (автономный и соматический отделы). Общепринято, что н

Вещества, активирующие глютаматэргические структуры мозга
Глютамат представляет собой аминокислоту, в высокой концентрации содержащуюся в структурах центральной нервной системы. Она образуется путем аминирования

Конвульсанты, блокирующие тормозные процессы в ЦНС
Многие конвульсанты, блокируют проведение нервного импульса в синапсах, участвующих в осуществлении механизмов пресинаптического и постсинаптического торможения в ЦНС. К числу таковых, прежде всего

Конвульсанты, действующие на ГАМК-ергический синапс.
Существуют многочисленные данные, подтверждающие участие ГАМК в механизмах пресинаптического и, резистентного к глицину, постсинаптического торможения. ГАМК - нейромедиатор в тормозных синапсах, ка

Конвульсанты, действующие на глицинергические синапсы
Глицин является тормозным медиатором интернейронов спинного мозга и ствола головного мозга, регулирующих функциональную активность мотонейронов, локализующихся в этих анатомических образованиях. В

Вещества, нарушающие процессы биоэнергетики в мозге
Острое нарушение энергетического обмена в организме может сопровождаться судорожным синдромом. При тяжелом отравлении цианидами, сульфидами, молниеносной форме интоксикации СО судороги - характерно

Седативно-гипнотическй эффект. Наркотики
Седативно-гипнотический эффект развивается при действии на организм огромного числа химических веществ с различным строением и механизмами токсического действия. Острое отравление этими веществами

Неэлектролиты
Представители группы "неэлектролитов"- многочисленные соединения разного химического строения, но с близкими физико-химическими свойствами. Это неполярные, хорошо раствор

Психодислептический синдром. Психодислептики
Научное изучение психоактивных веществ началось лишь во второй половине ХХ века. Однако уже сейчас многие соединения широко используются в клинической практике, а некоторые - испытывались на предме

Эйфориогены
Определенный токсикологический интерес среди веществ этой группы представляет -тетрагидроканн

Галлюциногены
Галлюциногенами называют вещества, в клинике отравления которыми преобладают нарушения восприятия в форме иллюзий и галлюцинаций, при этом пострадавшие, как правило, не утрачивают контакт с окружаю

Делириогены
Делирий способны вызывать все вещества, обладающие центральной М-холинолитической активностью. Наиболее токсичным представителем группы является вещество BZ - производное хинуклединилбензилата, нах

Нарушение нервной регуляции периферических органов и систем
Важнейшим проявлением действия нейротоксикантов является нарушение механизмов нервной регуляции жизненно важных органов и систем: сердечно-сосудистой, дыхательной, двигательней и др. Эти нарушения

Нарушение механизмов синаптической передачи
Все вещества, нарушающие передачу нервных импульсов в холинергических и катехоламинергических синапсах периферического отдела нервной системы, вызывают рассматриваемые эффекты. Свойства большинства

Блокаторы ионных каналов
В строгом смысле слова вещества этой группы не относятся к "чистым" нейротоксикантам, поскольку, блокируя ионные каналы, действуют на возбудимые мембраны всех типов клеток организма: нерв

Хронические нейротоксические процессы. Токсические нейропатии
Хронические процессы, развивающиеся со стороны нервной системы в результате острого, подострого или хронического воздействия токсикантов можно классифицировать в соответствии с повреждаемыми элемен

Токсическая сегментарная миелинопатия
Миелинобразующие клетки весьма уязвимы для действия токсикантов, поскольку обладают большой площадью поверхности и объёмом цитоплазмы, в котором необходимо поддерживать определённый уровень обменны

Токсическая дистальная аксонопатия
Дистальная аксонопатия - наиболее частая форма поражения периферического отдела нервной системы токсикантами. До настоящего времени этот вид патологии и в эксперименте и в клинических условиях изуч

Перикариальная токсическая нейронопатия
Количество токсикантов, вызывающих повреждение перикариона нервных клеток, относительно невелико. К их числу относятся: метилртуть, ртуть, адриамицин, талидомид, алюминий, винкристин, сероуглерод,

Оценка нейротоксичности в эксперименте
Современная нейробиология располагает огромным арсеналом прецизионных методов, позволяющих всесторонне оценить функциональное состояние нервной системы человека и экспериментальных животных. Многие

Диагностическая стратегия в нейротоксикологии
Диагностика выраженных нейротоксических эффектов не вызывает затруднений, поскольку формирующиеся при этом клинические синдромы достаточно хорошо изучены. Сложной задачей является выявление патолог

Сбор анамнестических данных
Ключом к выявлению нейротоксических эффектов является правильный сбор анамнеза. Это связано с тем, что симптоматика при токсических нейропатиях как правило мало чем отличается от идиопатических заб

Исследование специалистами
Симптомы интоксикации, по сути, идентичны проявлениям идиопатических форм патологии нервной системы. Обменные, инфекционные и другие факторы, вызывают патологические состояния, в основе которых, та

Функциональные исследования
Изучение нервной проводимости и электромиографические исследования хотя и не является специфичным для выявления токсических нейропатий, тем не менее дают важную количественную характеристику патоло

Гепатотоксичность - это свойство химических веществ, действуя на организм немеханическим путем, вызывать структурно-функциональные нарушения печени.
Известен широкий круг веществ, обладающих гепатотоксичностью. К их числу относятся природные соединения, продуцируемые растениями, грибами, микроорганизмами, минералы, продукты химической и фармаце

Анатомо-физиологияческие особенности печени
Благодаря строению и функциям, печень чрезвычайно чувствительна к действию токсикантов. Функциональной единицей печени является ацинус. Область вокруг портальной триады (печеночная артерия

Патологические состояния, формирующиеся при действии гепатотоксикантов
Патологические состояния печени химической этиологии можно отнести к одному из двух классов: цитотоксические и холестатические. Независимо от действующего фактора формируется ограниченное количеств

Стеатоз
Стеатоз, или жировое перерождение печени, - это состояние, характеризующееся избыточным накоплением жира в гепатоцитах. Одновременно отмечается снижение содержания в плазме крови липидов и липопрот

Холестаз
Холестаз проявляется нарушением процесса желчевыведения, усилением проницаемости стенки желчевыводящих каналов, дисфункцией микроворсинок эпителия жёлчных ходов, обеспечивающих ток желчи. Воспалени

Фиброз (цирроз)
Фиброз - конечный результат хронически протекающих патологических процессов, развивающихся в печени при воздействии токсикантов. В поврежденном органе появляются коллагеновые тяжи, разрушающие норм

Канцерогенез
Канцерогенез наблюдается при действии целого ряда природных и промышленных токсикантов. Для большинства веществ механизм канцерогенного действия не установлен (см. раздел "Химический канцероге

Морфологические формы токсического повреждения печени
Основные формы токсического повреждения печени представлены в таблице 3. Повреждения могут быть острыми и хроническими. Как указывалось ранее, они проявляются цитотоксическим и холестатическим эффе

Краткая характеристика гепатотоксикантов
Zimmerman в 1978 г предложил относить вещества, вызывающие поражение печени к одной из двух групп: (1) облигатные гепатотоксиканты и (2) повреждающие орган лишь у чувствительных индивидов (идиосинк

Облигатные гепатотоксиканты
Повреждение печени может быть следствием действия на орган токсикантов или продуктов их метаболизма. Некоторые токсиканты в процессе метаболизма инициируют в гепатоцитах генерацию свободны

Идиосинкратические гепатотоксиканты
У небольшой части людей вещества, не проявляющие свойства гепатотоксикантов в эксперименте, тем не менее вызывают поражения печени. В основе явления лежат генетически детерминированные особенности

Условия воздействия гепатотоксикантов.
Вещества, обладающие свойствами гепатотоксикантов, могут действовать на человека, как в быту, так и в производственных условиях. В быту наиболее частыми причинами интоксикации являются средства быт

Факторы, влияющие на гепатотоксичность
Различные факторы влияют на гепатотоксичность, главным образом, модифицируя способность печени метаболизировать ксенобиотики. Результат этой модификации определяется двумя обстоятельствами. Во-перв

Токсины бледной поганки
Представители группы Amanita phalloides (бледная поганка) являются причиной более 50% случаев отравления грибами. 95% отравлений заканчивается летальным исходом. Более 40 лет назад Wielands, а позж

Дихлорэтан
Дихлорэтан (хлористый этилен, ClCH2-CH2Cl) применяется в качестве растворителя лаков, красок и т.д. Это бесцветная, практически не растворяющаяся в воде, достаточно летучая жи

Изучение гепатотоксичности ксенобиотиков
Гепатотоксичность вещества устанавливается в ходе классических острых, подострых и хронических токсикологических экспериментов. Применяемые при этом тесты ни чем не отличаются от таковых, используе

Определение активности энзимов в плазме крови.
Повышение активности в плазме крови таких энзимов, как аланиниаминотрансферазы (АЛТ), аспартатаминотрансферазы (АСТ), трансферазы гамма-глутаминовой кислоты (ТГГК), лактатдегидрогеназы (ЛДГ) свидет

Оценка метаболической активности печени
Надежными являются методы прямого измерения активности энзимов, принимающих участие в метаболизме ксенобиотиков, в гомогенате органа лабораторных животных, в различные сроки после введения исследуе

Принципы выявление токсических гепатопатий у человека
Установление факта острого повреждения печени ксенобиотиком, как правило, не является сложной задачей. Выявление скрытых форм патологии печени, связанных с подострым и хроническим действием гепатот

Острые гепатопатии химической этиологии.
При остром поражении некоторыми хорошо известными гепатотоксикантами (четыреххлорисиый углерод, жёлтый фосфор, токсины бледной поганки, ацетаминофен) отчетливо прослеживаются три периода течения ин

Выявление гепатотоксичности в популяции лиц, контактирующих с опасными химическими агентами.
Программы, предназначенные для обеспечения контроля лиц, контактирующих с гепатотоксикантами, как и все скрининговые программы, должны строиться в соответствии с определёнными принципами. Обследова

Анатомо-физиологические особенности органа
Почки чрезвычайно сложный орган, как в плане морфологии, так и физиологии, основные функции которого - экскреция продуктов метаболизма из организма (см. раздел "Выделение ксенобиотиков из орга

Механизмы действия
Механизмы нефротоксичности имеют биохимическую, иммунологическую и гемодинамическую природу. Поражение органа многими токсикантами носит смешанный характер. По мнению некоторых авторов (На

Биохимические механизмы
Механизмы нефротоксического действия ксенобиотиков многообразны и вместе с тем развиваются по достаточно общему сценарию. Прошедший через фильтрационный барьер в клубочках токсикант концентрируется

Иммунологические механизмы
Нефротоксические процессы иммунного типа, как правило, являются следствием двух основных процессов: (1) отложение в гломерулярных структурах почек комплекса антиген-антитело; (2) образование компле

Гемодинамические механизмы
Нарушения гемодинамики являются частой причиной развития токсических нефропатий. При остром поражении токсикантом почечных канальцев функции органа могут нарушаться вследствие закупорки пр

Проявления токсического действия
Основными проявлениями поражения почек токсикантами являются: - появление крови в моче (гематурия) вследствие повреждения стенки капилляров клубочков; - появление белка в моче бол

Краткая характеристика отдельных нефротоксикантов
Нефротоксиканты чрезвычайно широко используются в быту и на производстве. Так, органические растворители являются компонентами многочисленных лаков, красок, клеев, чистящих средств, пестицидов и т.

Металлы
Многие тяжелые металлы являются выраженными нефротоксикантами, поражение которыми даже в малых дозах приводит к появлению глюкозурии, аминоацидурии, полиурии. При тяжелых отравлениях металлами форм

Технические жидкости
Целый ряд технических жидкостей, и среди них прежде всего органические растворители, широко используемые в быту и на производстве, являются потенциальными нефротоксикантами. В зависимости от дозы в

Этиленгликоль
Этиленгликоль - двухатомный спирт (СН2ОН-СН2ОН) - входит в состав различных рецептур антифризов и тормозных жидкостей. Отравления веществом возможны только при приеме его внут

Оценка нефротоксичности ксенобиотиков
Нефротоксичность веществ оценивается в ходе острых подострых, хронических токсикологических экспериментов. Желательно опыты выполнять на нескольких видах лабораторных животных. В ходе исследования,

Выявление токсических поражений почек у человека
Диагностика острых токсических нефропатий основывается на клинических и лабораторных данных. В ходе плановых обследований лиц, контактирующих с потенциальными нефротоксикантами, для целей

ОСНОВЫ ЭКОТОКСИКОЛОГИИ
Развитие промышленности неразрывно связано с расширением круга используемых химических веществ. Увеличение объемов применяемых пестицидов, удобрений и других химикатов - характерная черта современн

Ксенобиотический профиль среды
С позиций токсиколога абиотические и биотические элементы того, что мы называем окружающей средой - все это сложные, порой особым образом организованные агломераты, смеси бесчисленного количества м

Экотоксикокинетика
Экотоксикокинетика - раздел экотоксикологии, рассматривающий судьбу ксенобиотиков (экополлютантов) в окружающей среде: источники их появления; распределение в абиотических и биотических эле

Персистирование
Многочисленные абиотические (происходящие без участия живых организмов) и биотические (происходящие с участием живых организмов) процессы в окружающей среде, направлены на элиминацию (удаление) эко

Абиотическая трансформация
На стойкость вещества в окружающей среде влияет большое количество процессов. Основными являются фотолиз (разрушение под влиянием света), гидролиз, окисление. Фотолиз. Све

Биотическая трансформация
Абиотическое разрушение химических веществ обычно проходит с малой скоростью. Значительно быстрее деградируют ксенобиотики при участии биоты, особенно микроорганизмов (главным образом бактерий и гр

Процессы элиминации, не связанные с разрушением
Некоторые процессы, происходящие в окружающей среде, способствуют элиминации ксенобиотиков из региона, изменяя их распределение в компонентах среды. Загрязнитель с высоким значением давления пара м

Биоаккумуляция
Если загрязнитель окружающей среды не может попасть внутрь организма, он, как правило, не представляет для него существенной опасности. Однако, попав во внутренние среды, многие ксенобиотики способ

Факторы, влияющие на биоаккумуляцию
Склонность экотоксикантов к биоаккумуляции зависит от ряда факторов. Первый - персистирование ксенобиотика в среде. Степень накопления вещества в организме, в конечном счете, определяется его содер

Значение биоаккумуляции
Биоаккумуляция может лежать в основе не только хронических, но и отсроченных острых токсических эффектов. Так, быстрая потеря жира, в котором накоплено большое количество вещества, приводит к выход

Биомагнификация
Химические вещества могут перемещаться по пищевым цепям от организмов-жертв, к организмам-консументам. Для высоко липофильных веществ это перемещение может сопровождаться увеличением концентрации т

Общие понятия
Экотоксикодинамика - раздел экотоксикологиии, рассматривающий конкретные механизмы развития и формы токсического процесса, вызванного действием экотоксикантов на биоценоз и/или отдельные ви

Экотоксичность
Экотоксичность - это способность данного ксенобиотического профиля среды вызывать неблагоприятные эффекты в соответствующем биоценозе. В тех случаях, когда нарушение естественного

Острая экотоксичность
Острое токсического действия веществ на биоценоз может явиться следствием аварий и катастроф, сопровождающихся выходом в окружающую среду большого количества относительно нестойкого токсиканта или

Хроническая экотоксичность
С хронической токсичностью веществ, как правило, ассоциируются сублетальные эффекты. Часто при этом подразумевают нарушение репродуктивных функций, иммунные сдвиги, эндокринную патологию, пороки ра

Механизмы экотоксичности
В современной литературе приводятся многочисленные примеры механизмов действия химических веществ на живую природу, позволяющие оценить их сложность и неожиданность. 1. Прямое дейс

Взрыв численности популяции вследствие уничтожения вида-конкурента.
В США после начала применения синтетических пестицидов для борьбы с некоторыми видами вредителей растений стали интенсивно размножаться малочисленные ранее виды клещей-хлопкоедов. Количество опасны

Оценка экологического риска
Важнейшей характеристикой ксенобиотиков с позиции экотоксикологии является их экотоксическая опасность. Опасность - это потенциальная способность вещества в конкретных условиях вызывать повреждение

Полигалогенированные ароматические углеводороды
Группа полигалогенированных полициклических углеводородов включает галогенпроизводные некоторых ароматических углеводородов, например, диоксина, дибензофурана, бифенила, бензола и др. Гало

Диоксины
Разнообразие химической структуры диоксинов определяется числом атомов и типом галогена, возможностью изомерии. В настоящее время насчитывается несколько десятков семейств этих ядов, а общее число

Полихлорированные бифенилы (ПХБ)
ПХБ это класс синтетических хлорсодержащих полициклических соединений, используемых в качестве инсектицидов. В США для этой цели они производились с 1929 по 1977 год под промышленной маркой Арохлор

Хлорированные бензолы (ХБ)
Хлорированные бензолы - это группа химических соединений, используемых в качестве органических растворителей, пестицидов, фунгицидов, компонентов химического синтеза. Они представляют собой молекул

Состояние проблемы
Во многих странах мира феномен Унеспецифической повышенной химической восприимчивостиФ (ПХВ) граждан привлекает внимание не только медицинской общественности, но и административных структур различн

Неспецифическая повышенная химическая восприимчивость, как заболевание
Экологическая медицина не описывает состояние ПХВ в терминах традиционной медицины, симптоматики и лабораторных данных. По мнению приверженцев этой школы, ПХВ - состояние, продолжающееся не менее т

Клиническая экология
Клиническая экология сформировалась в 1930 - 1940 годах в рамках концепции, объясняющей аллергические реакции на пищевые продукты. Полагали, что причиной пищевых аллергий являются хронические забол

Диагностика СПХВ
Диагноз СПХВ ставится на основании предъявляемых жалоб, наличия в анамнезе факта воздействия на больного токсических агентов, выявления в ходе специальных исследований повышенной чувствительности ч

Лечение синдрома ПХВ
Поскольку большинство больных СПХВ не верят традиционным методам диагностики и лечения, вернуть больного к нормальной жизни порой бывает крайне сложно. В литературе описываются больные, лечившиеся

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги