рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Проводники соединений и контакты в полупроводниковых ИМС

Проводники соединений и контакты в полупроводниковых ИМС - раздел Электроника, Введение в микроэлектронику Элементы Имс Соединяются Между Собой Тонкопленочными Проводниками. Предварите...

Элементы ИМС соединяются между собой тонкопленочными проводниками. Предварительно в двуокиси кремния, покрывающей поверхность пластины, вытравливаются окна под контакты. Далее на всю поверхность наносится проводящая пленка, а затем ее травят через маску и формируют рисунок межсоединений.

Материал пленки должен обеспечивать омический контакт к кремнию; иметь низкое удельное сопротивление; хорошую адгезию к кремнию и двуокиси кремния; ТКР, близкий к ТКР кремния и двуокиси кремния; выдерживать высокую плотность тока. Контакт должен быть механически прочным, не подвергаться коррозии, не образовывать химических соединений с кремнием.

Металла, удовлетворяющего всем этим требованиям, не существует. Наиболее полно им отвечает алюминий, имеющий удельное сопротивление 2,6 ∙ 10-6 Ом∙см. Он наносится термическим вакуумным напылением.

После создания рисунка межсоединений производится вжигание контактов при 550 ℃ в течение 5 – 10 мин. На поверхности двуокиси кремния протекает реакция

 

Al + SiO2 → Al2O3 + Si,

 

улучшающая адгезию пленки к SiO2. В местах контактных окон удаляются возможные остатки SiO2; алюминий внедряется в кремний (его поверхностная концентрация составляет около 5∙1018 см-3). Это улучшает контакт и адгезию.

Ввиду того, что алюминий является акцептором, контакт к областям р-типа всегда получается омическим. Для получения омического контакта к n-области концентрация доноров в ней должна быть выше, чем концентрация алюминия. При низкой концентрации доноров в поверхностном слое может произойти перекомпенсация акцепторами, что приведет к инверсии проводимости (изменению типа проводимости с n- на р-тип) и образованию p-n перехода. Поэтому под контакт к алюминию в n-Si создается сильнолегированная n+-область с концентрацией доноров около 1020 см-3 – рис. 4.16.

 

 

 

Рис. 4.16. Создание n+-области под контакт алюминия к n-кремнию

 

В БИС и СБИС создаются несколько слоев межсоединений, разделенных слоями диэлектрика (обычно SiO2), получаемых методом осаждения из газовой фазы. В двуокиси кремния вскрывают окна для контактов между проводниками соседних слоев.

Наиболее сложные схемы (СБИС) могут иметь до 9 - 12 слоев межсоединений, например, на рис. 4.17 показаны 8 слоев медных межсоединений.

Как материал первого слоя алюминий имеет ряд недостатков. В неглубоких p-n переходах (0,5 – 1 мкм) диффузия алюминия в кремний при термообработке может привести к замыканию (рис. 4.18).

Кроме того алюминий подвержен электромиграции – при высокой плотности тока и малой толщине пленки перенос атомов алюминия нарушает однородности пленки вплоть до ее разрывов.

Легкая окисляемость пленки Al с образованиемAl2O3 ухудшает контакты между слоями.

 

 

 

Рис. 4.17. Многослойные медные межсоединения

 

 

 

 

Рис. 4.18. Замыкание p-n перехода после

термообработки алюминиевой металлизации

.

Поэтому в качестве проводников первого слоя используют легированный поликремний. Иногда используют два слоя: поликремний - снизу и металл - сверху. Недостатком поликремниевых проводников является их большой сопротивление. Оно снижается на порядок при использовании силицидов тугоплавких металлов (Ta, W, Mo и др.), дающих хорошие омические контакты к кремнию, имеющих высокую адгезию к кремнию и двуокиси кремния. Однако в СБИС при большой длине межсоединений их сопротивление оказывается слишком значительным.

С повышением степени интеграции роль межсоединений возрастает: они занимают все большую площадь кристалла (60 – 85 %) и начинают влиять на основные параметры схем: площадь кристал­ла, быстродействие, показатель качества, помехоустойчивость, надежность и др. При ширине проводников около 0,1 мкм внутренние соединения «съедают» до 90 % сигнала по уровню и мощности. Если с уменьшением размеров быстродействие логических элементов возрастает, то быстродействие межсоединений си­стемы металлизации снижается из-за уменьшения поперечного сечения проводников межсоединений и соответствующего уве­личения погонного сопротивления, а также из-за уменьшения расстояния между соседними проводниками, заполненного диэ­лектриком, и соответствующего увеличения электрической емко­сти. В результате, начиная с некоторого уровня интеграции ИМС, задержки сигналов в межсоединениях могут превышать задерж­ки в самих логических элементах.

С уменьшением поперечного сечения проводников межсоединений появляется и ряд других проблем: снижается электромиграционная стойкость проводни­ков, значительно усложняются технологические приемы трав­ления при создании рисунка проводников и др.

Это обусловило переход на медную металлизацию, так как из всех металлов медь обладает самой лучшей электропроводностью ρ = 1,68 ∙ 10-6 Ом∙см (за исключением серебра). Медная металлизация выдерживает в 5 раз большую плотность тока, чем алюминиевая (за счет лучшей электро- и теплопроводности и более высокой температуры плавления).

Главные преимущества меди как материала межсоедине­ний перед алюминием — более низкое удельное сопротивление, что по оценкам дает 40% выигрыш в быстродействии, более высокая термическая стабильность и существенно меньшая склонность к электромиграции.

 

– Конец работы –

Эта тема принадлежит разделу:

Введение в микроэлектронику

Технический университет.. е п новокрещенова..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Проводники соединений и контакты в полупроводниковых ИМС

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Исторический обзор
Электроника – раздел науки и техники, в котором исследуются электронные явления в веществе; на основе результатов этих исследований разрабатываются методы создания электронных приборов, электронных

Полупроводниковые ИМС
В первых дискретных полупроводниковых приборах (точечных и сплавных) электронно-дырочный переход формировался после разделения полупроводниковой пластины на кристаллы. Поэтому каждый кристалл требо

Основные принципы интегральной технологии
Важнейшим принципом является технологическая совместимость элементов ИМС с наиболее сложным элементом, которым является транзистор. Структура элементов (диодов, резисторов, конденсаторов)

Гибридные и совмещенные интегральные схемы
Применение полупроводниковых ИМС ограничено следующими причинами: производство полупроводниковых ИМС экономически оправдано лишь в крупносерийном и массовом производстве (основные затраты идут на п

Степень интеграции
Степень интеграции К – это показатель сложности ИМС, характеризуемой числом элементов N, полученных интегральной технологией на общем кристалле:   К = lg N.

Собственные и примесные полупроводники
Собственный полупроводник. Рассмотрим механизм проводимости полупроводниковых материалов на примере элементарных полупроводников. В кристалле кремния (он находится в четвертой группе таблицы

Полупроводников (p-n переход)
Для создания контакта электронного и дырочного полупроводников в одну часть кристалла вводится акцепторная примесь, а в другую часть – донорная. Граница раздела между областями кристалла с разного

Основные этапы технологии ИМС
Основными этапами изготовления ИМС являются: · получение чистого полупроводникового материала; · выращивание из него монокристаллических слитков с заданными электрофизическими сво

Выбор полупроводникового материала
Технология ИМС предъявляет к полупроводниковому материалу жесткие требования. Для массового производства приборов и ИМС полупроводниковый материал должен: - иметь высокую химическ

Получение полупроводникового материала
Материалами, используемыми для изготовления ИМС, являются кремний и арсенид галлия. Однако ИМС делают в основном на кремнии, так как технология ИМС на арсениде галлия более сложная и не столь хорош

Получение полупроводниковых пластин
Полупроводниковые слитки режутся на пластины тонкими стальными дисками с алмазной режущей кромкой -рис.3.4.         Рис. 3.4. Резка

Получение эпитаксиальных структур
До 1965 г. выход годных ИМС на биполярных транзисторах не превышал 5 %. Использование в структуре ИМС эпитаксиального слоя позволило увеличить процент выхода годных ИМС до 50 – 70 %. Совре

Методы формирования элементов ИМС
  Основным элементом полупроводниковых ИМС является p-n переход. Для его образования в полупроводник заданного типа проводимости вводятся атомы примеси, создающей проводимость противо

Общая характеристика технологического процесса производства ИМС
Общее количество операций технологического процесса может достигать 200 в зависимости от структуры ИМС и конструкции корпуса.Все операции могут быть разделены на три группы - рис. 3.5.

Типы структур ИМС
Рассмотрим структуры биполярных ИМС. Диффузионно-планарная структура. Функции изоляции элементов в ней выполняют p-n переходы, ограничивающие области отдельных элементов и смещенные

Требования к кремниевым пластинам
Групповая кремниевая подложка представляет собой круглую плоскопараллельную пластину диаметром обычно до 300 мм и толщиной (в зависимости от диаметра) в интервале от 0,2 ÷ 0,3 мм до 1 мм. По

Микроклимат и производственная гигиена
Для повышения выхода годных ИМС и воспроизводимости их параметров важно поддерживать стабильные климатические условия, высокую чистоту воздушной среды, технологических газов и жидкостей. Т

Термическая диффузия примесей
Диффузия проводится с целью внедрения атомов легирующего элемента в кристаллическую решетку полупроводника для образования области с противоположным по отношению к исходному материалу типом проводи

Ионное легирование
Ионное легирование – это технологическая операция введения примесей в поверхностный слой пластины или эпитаксиальной пленки путем бомбардировки ионами примесей. Получение ионов, их ускорен

Эпитаксия
  Термин эпитаксия происходит от греческого epi – на, над и taxis – расположение. Эпитаксия - процесс наращивания на пластину (подложку) монокристаллического слоя (эпитаксиал

Свойства пленки двуокиси кремния
Двуокись кремния широко используется в технологии ИМС: для создания масок, используемых при проведении локальных технологических процессов, формирования подзатворного диэлектрика в МДП-структурах,

Травление
Травление – это удаление поверхностного слоя не механическим, а чаще всего химическим путем. Травление используют для получения максимально ровной бездефектной поверхности пластин, не достижимой ме

Нанесение тонких пленок
Тонкие пленки широко используются как в полупроводниковых, так и в гибридныхИМС. Они являются материалом проводников соединений, резисторов, конденсаторов, изоляции. Помимо требуемых электрофизичес

Литография
Литография – это процесс формирования отверстий (окон) в масках, создаваемых на поверхности пластины и предназначенных для проведения локальных технологических процессов (легирования, травления, ок

ЗАКЛЮЧЕНИЕ
С 1965 г. и по настоящее время полупроводниковая электроника бурно развивается. Ее базовым материалом является кремний. Он прекрасно обрабатывается, обеспечивает получение субмикронных схемных элем

Индексы Миллера
Пусть плоскость отсекает на осях координат отрезки ОА, ОВ и ОС (в единицах периода решетки). Рассчитаем обратные им величины H = 1/ОА, K = 1/ОВ, L = 1/ОС и определим наи­меньшие целые числа с таким

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Щука А.А. Электроника: учеб. пособие / А.А. Щука. СПб.: БХВ-Петербург, 2006. 2. Аваев Н.А. Основы микроэлектроники / Н.А. Аваев, Ю.Е. Наумов, В.Т. Фролкин. М.: Радио и связь, 1991.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги