Полупроводниковые приборы с отрицательным сопротивлением.

Тиристор – это полупроводниковый прибор с двумя устойчивыми состояниями , имеющий три и более взаимодействующих выпрямляющих перехода , вольт- амперная характеристика которого имеет участок с отрицательным дифференциальным сопротивлением. При работе в схеме тиристор может находиться в двух состояниях . В одном состоянии – закрытом – тиристор имеет высокое сопротивление и пропускает малый ток, в другом – открытом – сопротивление тиристора мало и через него протекает большой ток. Структура тиристора состоит из четырёх областей полупроводника с чередующимся типом электропроводности

Кроме трёх выпрямляющих контактов тиристор имеет два омических пе -рехода . Контакт с внешним p-слоем называется анодом, а с внешним n-слоем – катодом . В зависимости от числа выводов тиристоры делятся на диодные , триод -ные и тетродные . Тиристор, имеющий два вывода, называется динистором, или

диодным тиристором. Тиристоры , имеющие три и четыре вывода, называются триодными или тетродными. Помимо четырёхслойных структур некоторые ви-ды тиристоров имеют большее число полупроводниковых областей . К таким приборам относится симметричный тиристор ( симистр ), который может вклю-чаться при различных полярностях приложенного напряжения. На рис. 6.1, б p-n-p-n- структура тиристора представлена в виде двух транзисторов , соединённых между собой , каждый из которых находится в активном режиме. В связи с таким представлением крайние области тиристорной структуры называют эмиттерами , а примыкающие к ним p-n-переходы – эмиттерными , цен-тральный переход – коллекторным . Между переходами находятся базовые области.

ТРИОДНЫЕ ТИРИСТОРЫ

Триодный тиристор ( тринистор) отличается от ди-нисторов наличием внешнего вывода от одной из баз, с помощью которого можно управлять включением тиристора ( рис. 6.3). В триодном тиристоре, имеющем eправляющий электрод от одной из базовых областей , уровень инжекции через прилегающий к этой базе эмиттерный переход можно величивать путём подачи положительного по отношению к катоду напряжения на управляющий элек -трод . Поэтому триодный тиристор можно переключить из закрытого состояния в открытое даже при небольших анодных напряжениях ( рис. 6.4). Переключение триодного тиристора с помощью прямого напряжения на управляющем электроде или то -ка через этот электрод можно представить как переход транзисторной n-p-n- структуры в режим насыщения при большом токе базы. При этом коллекторный переход транзисторной структуры ( он же и коллекторный пере -ход тиристора) смещается в прямом направлении. На-пряжение включения зависит от управляющего тока .

Симметричные тиристоры ( симисторы)

Симметричный тиристор – это триодный тиристор , который при подаче сигнала на его управляющий электрод включается как в прямом, так и в обрат-ном направлении. Структура симметричного тиристора состоит из пяти областей с чередующим-ся типом лектропроводности, которые образуют четыре p-n- перехода . Крайние пе -реходы зашунтированы объёмными сопротивлениями прилегающих областей p-типа (рис. 6.5, а). Вольт-амперные характеристики симистора приведены на рис. 6.5, б.

Исходными материалами для тиристоров являются кремний , а также ар -сенид галлия , имеющие большую ширину запрещённой зоны. Тиристоры , изго -товленные на основе широкозонных полупроводников , имеют большее значе-ние максимальной рабочей температуры , а следовательно, и максимально до-пустимой плотности тока в открытом состоянии, кроме того , напряжение про -боя у них выше, что позволяет делать тиристоры с большими значениями на -пряжения включения и максимально допустимым обратным напряжением . Так как обратный ток невелик через p-n-переходы, смещённые в обратном направ -лении , рассеиваемая мощность в тиристоре значительно меньше при закрытом

состоянии и обратном напряжении. Тиристоры отличаются высокой надёжностью , долговечностью и высо-кой экономичностью. Достоинством тиристора является свойство памяти. При переключении в проводящее состояние он может оставаться в этом состоянии до тех пор , пока ток через него не станет меньше тока включения . Тиристоры широко применяются в радиолокации, устройствах радиосвя -зи , автоматике как приборы с отрицательным сопротивлением, управляемые

ключи , пороговые элементы, преобразователи энергии, триггеры . По сравне -нию с биполярными транзисторами они могут обеспечить большой коэффици-ент по току включения , иметь большой ток и одновременно высокое напряже -ние, что важно для получения хороших характеристик мощных устройств, по-зволяют получить высокий КПД преобразования энергии.

Структура, принцип действия и ВАХ ДВУХБАЗОВОГО ДИОДА

представляющий собой кристалл полупроводника, в котором создан p-n переход, называемый инжектором:

Этим переходом кристалл полупроводника разделяется как бы на две области базы. Поэтому однопереходный транзистор имеет и другое широко распространённое название - двухбазовый диод. Принцип действия транзистора основан на изменении объёмного сопротивления полупроводника базы при инжекции. В отличии от биполярных и полевых транзисторов ОПТ представляет собой прибор с отрицательным сопротивлением. Это означает, что в определённых условиях входное напряжение или сигнал могут уменьшаться даже при возрастании выходного тока через нагрузку. Когда ОПТ находится во включённом состоянии, выключить его можно только разомкнув цепь, либо сняв входное напряжение.

Участок между базами образован кремниевой пластиной n-типа и имеет линейную вольтамперную характеристику, т.е. ток через этот участок прямо пропорционален приложенному межбазовому напряжению. При отсутствии напряжения на эмиттере (относительно Б1) за счёт проходящего I2 в базе 1 внутри кристалла создаётся падение напряжения Uвн, запирающее p-n переход, При подаче на вход небольшого напряжения Uвх=<Uвн величина тока, проходящего через переход,почти не изменяется. При Uвх>Uвн переход смещается в прямом направлении и начинается инжекция носителей заряда (дырок) в базы, приводящая к снижению их сопротивления. При этом уменьшается падение напряжения Uвн, что приводит к лавинообразному отпиранию перехода - участок II на воль-амперной характеристике. При Uмб = 0 ВАХ представляет обычную ВАХ p-n перехода

 

Однопереходного Транзистор – это трёхэлектродный полупроводниковый прибор с одним p-n- переходом и двумя выводами базовой области, предназна-ченными для переключения и генерирования электрических импульсов за счёт модуляции сопротивления базы в результате инжекции через p-n- переход неосновных носителей заряда .

Представляющий собой кристалл полупроводника, в котором создан p-n переход, называемый инжектором:

Этим переходом кристалл полупроводника разделяется как бы на две области базы. Поэтому однопереходный транзистор имеет и другое широко распространённое название - двухбазовый диод. Принцип действия транзистора основан на изменении объёмного сопротивления полупроводника базы при инжекции. В отличии от биполярных и полевых транзисторов ОПТ представляет собой прибор с отрицательным сопротивлением. Это означает, что в определённых условиях входное напряжение или сигнал могут уменьшаться даже при возрастании выходного тока через нагрузку. Когда ОПТ находится во включённом состоянии, выключить его можно только разомкнув цепь, либо сняв входное напряжение.

Uвкл~ Uвн = Uмб*h (eta)

h (eta) = Rб1/(Rб1+Rб2)

Транзисторный аналог двухбазового диода.

представляющий собой кристалл полупроводника, в котором создан p-n переход, называемый инжектором:

Этим переходом кристалл полупроводника разделяется как бы на две области базы. Поэтому однопереходный транзистор имеет и другое широко распространённое название - двухбазовый диод. Принцип действия транзистора основан на изменении объёмного сопротивления полупроводника базы при инжекции. В отличии от биполярных и полевых транзисторов ОПТ представляет собой прибор с отрицательным сопротивлением. Это означает, что в определённых условиях входное напряжение или сигнал могут уменьшаться даже при возрастании выходного тока через нагрузку. Когда ОПТ находится во включённом состоянии, выключить его можно только разомкнув цепь, либо сняв входное напряжение.

Uвкл~ Uвн = Uмб*h (eta)

h (eta) = Rб1/(Rб1+Rб2)

Лавинный транзистор, транзистор, устойчиво работающий при напряжениях на коллекторном переходе, близких к напряжению пробоя. В этих условиях имеет место ударная ионизация, приводящая к увеличению числа носителей заряда в коллекторном переходе транзистора. Устойчивая работа Л. т. в предпробойной области обеспечивается повышенной однородностью распределения электрического поля по площади коллекторного перехода. В т1 отпирается эмиттер, переходный ток коллектора увеличивается, но при этом увеличивается коэф переноса alpha, а дифференциальное сопротивление уменьшается.


35. Способы включения биполярного транзистора и их конструктивные решения.

Существует три основные схемы включения транзисторов. При этом один из электродов транзистора является общей точкой входа и выхода каскада. Надо помнить, что под входом (выходом) понимают точки, между которыми действует входное (выходное) переменное напряжение. Основные схемы включения называются схемами с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК).

Схема с общим эмиттером (ОЭ). Такая схема изображена на рисунке 1. Во всех книжках написано, что эта схема является наиболее распространненой, т. к. дает наибольшее усиление по мощности.

Рис. 1 - Схема включения транзистора с общим эмиттером

Услительные свойства транзистора характеризует один из главных его параметров - статический коэффициент передачи тока базы или статический коэффициент усиления по току ?. Поскольку он должен характеризовать только сам транзистор, его определяют в режиме без нагрузки (Rк = 0). Численно он равен:

при Uк-э = const

Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент ki всегда меньше, чем ?, т. к. при включении нагрузки ток коллектора уменьшается.

Коэффициент усиления каскада по напряжению ku равен отношению амплитудных или действующих значений выходного и входного переменного напряжения. Входным является перемнное напряжение uб-э, а выходным - перемнное напряжение на резисторе, или что то же самое, напряжение коллектор-эмиттер. Напряжение база-эмиттер не превышает десятых долей вольта, а выходное достигает едениц и десятков вольт (при достаточном сопротивлении нагрузки и напряжении источника E2). Отсюда вытекает, что коэффициент усиления каскада по мощности равен сотням, тысячам, а иногда десяткам тысяч.

Важной характеристикой является входное сопротивление Rвх, которое определяется по закону Ома:

при Uк-э = const

Этот коэффициент бывает равен десяткам или сотням, но реальный коэффициент ki всегда меньше, чем ?, т. к. при включении нагрузки ток коллектора уменьшается.

Коэффициент усиления каскада по напряжению ku равен отношению амплитудных или действующих значений выходного и входного переменного напряжения. Входным является перемнное напряжение uб-э, а выходным - перемнное напряжение на резисторе, или что то же самое, напряжение коллектор-эмиттер. Напряжение база-эмиттер не превышает десятых долей вольта, а выходное достигает едениц и десятков вольт (при достаточном сопротивлении нагрузки и напряжении источника E2). Отсюда вытекает, что коэффициент усиления каскада по мощности равен сотням, тысячам, а иногда десяткам тысяч.

Важной характеристикой является входное сопротивление Rвх, которое определяется по закону Ома:

и составляет обычно от сотен Ом до едениц килоом. Входное сопротивление транзистора при включении по схеме ОЭ, как видно, получается сравнительно небольшим, что является существенным недостатком. Важно также отметить, что каскад по схеме ОЭ переворачивает фазу напряжения на 180°

К достоинствам схемы ОЭ можно отнести удобство питания ее от одного источника, поскольку на базу и коллектор подаются питающие напряжения одного знака. К недостаткам относят худшие частотные и температурные свойства (например,в сравнении со схемой ОБ). С повышением частоты усиление в схеме ОЭ снижается. К тому же, каскад по схеме ОЭ при усилении вносит значительные искажения.

Схема с общей базой (ОБ). Схема ОБ изображена на рисунке 2.

 

Рис. 2 - Схема включения транзистора с общей базой

Такая схема включения не дает значительного усиления, но обладает хорошими частотными и температурными свойствами. Применяется она не так часто, как схема ОЭ.

Коэффициент усиления по току схемы ОБ всегда немного меньше еденицы:

т. к. ток коллектора всегда лишь немного меньше тока эмиттера.

Статический коэффициент передачи тока для схемы ОБ обозначается ? и определяется:

при uк-б = const

Этот коэффициент всегда меньше 1 и чем он ближе к 1, тем лучше транзистор. Коэффициент усиления по напряжению получается таким же, как и в схеме ОЭ. Входное сопротивление схемы ОБ в десятки раз ниже, чем в схеме ОЭ.

Для схемы ОБ фазовый сдвиг между входным и выходным напряжением отсутствует, то есть фаза напряжения при усилении не переворачивается. Кроме того, при усилении схема ОБ вносит гораздо меньшие искажения, нежели схема ОЭ.

Схема с общим коллектором (ОК). Схема включения с общим коллектором показана на рисунке 3. Такая схема чаще называется эмиттерным повторителем.

Рис. 3 - Схема включения транзистора с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь. Коэффициент усиления по току почти такой же, как и в схеме ОЭ. Коэффициент усиления по напряжению приближается к единице, но всегда меньше ее. В итоге коэффициент усиления по мощности примерно равен ki, т. е. нескольким десяткам.

В схеме ОК фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Входное сопротивление схемы ОК довольно высокое (десятки килоом), а выходное - сравнительно небольшое. Это является немаловажным достоинством схемы.