рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тема 6. Элементы Оптоэлектроники

Тема 6. Элементы Оптоэлектроники - раздел Электроника, КОНСПЕКТ ЛЕКЦИЙ по дисциплине Элементы электроники Этапы развития электроники   Источники Оптического Излучения: Принцип Действия, Ос...

 

Источники оптического излучения: принцип действия, основные параметры, характеристики

Источником оптического излучения называют устройство, преобразующее любой вид энергии в энергию электромагнитных излучений оптического диапазона спектра. В светотехнике за источник излучения принимают не только те тела, которые являются самосветящимися, но также и тела, отражающие или пропускающие свет. Самосветящиеся тела называются первичными источниками, источники отраженного или проходящего излучения - вторичными.

Классификация источников излучения может осуществляться по различным признакам, например:

а) по размеру источников излучения;

б) по характеру распределения силы излучения в пространстве (по форме фотометрического тела);

в) по спектральному распределению потока излучения (световому потоку);

г) по времени действия излучения;

д) по цветовой температуре.

Источники делятся на искусственные и естественные.

Искусственные источники света - технические устройства различной конструкции и различными способами преобразования энергии, основным предназначением которых является получение светового излучения (как видимого, так и с различной длиной волны, например, инфракрасного). В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света (триболюминесценция, радиолюминесценция, биолюминесценция).

Естественные источники света - это природные материальные объекты и явления, основным или вторичным свойством которых является способность испускать видимый свет. В отличие от естественных источников света, искусственные источники света являются продуктом производства человека или других разумных существ. К естественным или природным источникам света прежде всего относят: Солнце, Луну, планеты, кометы, полярные сияния, атмосферные электрические разряды, биолюминесценцию живых организмов, свет звезд и иных космических объектов, свечение окисляющихся органических продуктов и минералов, и проч. Естественные источники света играют первостепенную роль в существовании жизни на земле и других планетах, и оказывают значительное воздействие на окружающую среду.

Все параметры источников излучения можно разбить на две группы: технические и эксплуатационные. Технические параметры - это те, которые характеризуют сам источник света безотносительно к условиям его применения. К техническим относятся все электрические, световые и механические параметры ламп.

Основные электрические параметры источников света:

1. Номинальное напряжение - напряжение, на которое рассчитана конкретная лампа или на которое она может включаться с предназначенной для этого специальной аппаратурой. Для ламп накаливания все остальные параметры снимаются именно при номинальном напряжении. Номинальное напряжение (впрочем, как и любое другое) измеряется в вольтах (сокращенное обозначение - В, V).

2. Номинальная мощность лампы - расчетная мощность, потребляемая лампой накаливания при ее включении на номинальное напряжение. Для газоразрядных ламп номинальная мощность - это расчетная мощность, которую потребляет лампа при ее включении со специально предназначенной для этого аппаратурой. Мощность измеряется в ваттах (сокращенное обозначение - Вт, W).

3. Для газоразрядных ламп иногда оговаривается род питающего тока - переменный или постоянный, так как отдельные типы ламп могут работать только на постоянном токе (например, шаровые ксеноновые или ртутные). Если такой оговорки в документации на лампу нет, то лампы должны включаться только на переменное напряжение. При работе на постоянном токе обязательно указывается полярность включения: к какому выводу лампы должен подключаться положительный полюс сети (+), к какому - отрицательный (-). Электрод лампы, к которому подключается положительный полюс напряжения, называется анодом, отрицательный - катодом.

4. Для некоторых типов ламп (например, для эталонных или образцовых ламп накаливания) вместо номинальной мощности указывается номинальный ток (1Н), который измеряется в амперах (А) или миллиамперах (мА, тА; 1 А - 1000 мА). Из световых параметров в каталогах и справочниках чаще всего указывается номинальный световой поток Ф, то есть поток, который создает лампа при ее номинальной мощности. Единица измерения светового потока, как уже было сказано, - люмен (лм, 1т).1.1.1 Точечные и линейные источники излучения

Точечный источник света - источник, излучающий свет по всем направлениям равномерно и размерами которого по сравнению с расстоянием, на котором оценивается его действие, можно пренебречь.

Точечный источник - такая же идеализация, как "луч" - и то и другое не существует в природе

Свет точечного источника отражается от идеального рассеивателя по закону косинусов Ламберта: интенсивность отраженного света пропорциональна косинусу угла между направлением света и нормалью к поверхности

B зависимости от соотношения размеров излучателя и расстояния его до исследуемой точки фотоприемника источники излучения можно условно разделить на две группы:

а) точечные источники излучения;

б) источники конечных размеров (линейные источники излучения).

Источник излучения, у которого размеры значительно меньше расстояния до исследуемой точки, называют точечным. Зa точечный источник принимают такой, максимальный размер (l) которого не менее чем в 10 раз меньше расстояния до приемника излучения (r) (рис.1). Для таких источников излучения соблюдается закон обратных квадратов, согласно которому освещенность поверхности прямо пропорциональна силе света и обратно пропорциональна квадрату расстояния между излучателем и облучаемой поверхностью.

 

 

Рис.1. К определению понятия "точечный источник излучения"

 

К группе излучателей конечных размеров относят те излучатели, у которых относительные размеры по всем направлениям больше размеров точечного излучателя. По мере удаления от исследуемой точки относительные размеры такого излучателя могут достигнуть такого значения, при котором данный излучатель можно будет принять за точечный.

– Конец работы –

Эта тема принадлежит разделу:

КОНСПЕКТ ЛЕКЦИЙ по дисциплине Элементы электроники Этапы развития электроники

Министерство образования и науки Российской Федерации... Государственное учреждение высшего профессионального образования... Белорусско Российский университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тема 6. Элементы Оптоэлектроники

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Система обозначения резисторов.
Различают две системы обозначения до и после 80-го года. 1. Система до 80-го года. А) Буква С – сопротивление; СП – переменный резистор; СТ – терморезистор;

Цветовая и кодовая маркировка резисторов.
Буква обозначает множитель, на который умножаются цифровые обозначения. Например, резистор с номинальным сопротивлением 475 Ом и допуском ±2 % обозначается К475G. Кроме всего, маломощные р

Система обозначений.
1.) К – постоянный конденсатор; КТ – подстроечный конденсатор; КП – переменный конденсатор; КН – вариконд. 2.) число – обозначает тип диэлектрика: 10 ке

Тема 2. Полупроводниковые резисторы
  Классификация и условное обозначение полупроводниковых резисторов Тип резисторов Условное обозначение Линейны

Варисторы
  Варистор – это полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения и, обладающий нелинейной симметричной вольт – амперной хара

Терморезисторы
Терморезисторы – это полупроводниковые резисторы, в которых используется зависимость электрического сопротивления полупроводника от температуры. Различают два типа тер

Тензорезисторы
  Тензорезистор – это полупроводниковый резистор, в котором используется зависимость электрического сопротивления от механической деформации. Назначение

Выпрямительные диоды.
Выпрямительным диодом называется полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный в силовых цепях, то есть в источниках питания. Выпрями

Стабилитроны
Стабилитроны -полупроводниковые диоды, напряжение на которых в области электрического пробоя слабо зависит от тока. Их используют для стабилизации напряжения. Рабоч

Варикапы
Варикапом называется полупроводниковый диод, у которого в качестве основного параметра используется барьерная ёмкость, величина которой варьируется при изменении обратного напр

Импульсные диоды
Импульсные диоды применяются в маломощных схемах с импульсным характером подводимого напряжения. Отличительное требование к ним – малое время перехода из закрытого состояния в

Диоды Шоттки
      Рис.1.17   Рис.1.18 Для уменьшения влияния диффузионной ёмкости (Сдиф

Туннельные диоды
Туннельные диоды — диоды, в основе которых использован туннельный эффект. Любой двухполюсник, имеющий на ВАХ участок отрицательного дифференциального сопротивления, може

Принцип действия
Источник Е внешнего питающего напряжения подключен к аноду положительным относительно катода полюсом. Если ток Iу через управляющий электрод триодного тиристора равен нулю,

Тема 5. Выпрямители
Структурная схема и параметры выпрямителей   Выпрямитель - это устройство, преобразующее переменный ток в постоянный.  

Характеристики полупроводниковых материалов
  При рассмотрении процесса излучения света источником либо его поглощения фотодиодом свет рассматривается с квантовой точки зрения. Частицы света называются фотонами. Сущест

Тема 7. Магнитоуправляемые элементы.
Магнитоуправляемые логические микросхемы, используются в устройствах самого разнообразного назначения. В настоящее время наиболее широкое распространение получили универсальные

Датчик Холла
Принцип действия датчиков основан на эффекте Холла. Основные преимущества этих датчиков заключается в отсутствии механических движущихся частей и высоком быстродействии (до 100 кГц). Благодаря этом

Магниторезисторы
Магниторезисторы - это электронные компоненты, действие которых основано на изменении электрического сопротивления полупроводника (или металла) при воздействии на него магнитно

Магнитотранзисторы
Из известных полупроводниковых преобразователей магнитного поля наиболее перспективными считаются магниточувствительные транзисторы - приборы, об падающие высокой чувствительностью и разрешающей сп

Устройство и принцип действия
Биполярный транзистор – это полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и пригодный для усиления мощности. Выпускаемые в настоящее время

Характеристики транзистора, включенного по схеме ОБ
Входной характеристикой является зависимость: IЭ = f(UЭБ) при UКБ = const (рис. 4.4, а). Выходной характеристикой является зависимость: IК = f(UКБ) при IЭ = const (рис. 4

Основные параметры
Для анализа и расчета цепей с биполярными транзисторами используют так называемые h – параметры транзистора, включенного по схеме ОЭ. Электрическое состояние транзистора, включенного по сх

Простейший усилительный каскад на биполярном транзисторе
Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером (рис. 4.7) Основными элементами схемы являются источник питания Ек, управляемый элемент – транзисторVT

Тема 9. Полевые транзисторы
Полевой транзистор – это электропреобразовательный прибор, в котором ток, протекающий через канал, управляется электрическим полем, возникающим при приложении напряжения между

Устройство и принцип действия
Полевой транзистор с управляющим р-n- переходом – это полевой транзистор, затвор которого отделен в электрическом отношении от канала р-n-переходом, смещенным в обратном направлении.  

Статические характеристики полевого транзистора с управляющим р-n- переходом
Рассмотрим вольт - амперные характеристики полевых транзисторов с р-n- переходом. Для этих транзисторов представляют интерес два вида вольт - амперных характеристик: стоковые и стоко - затворные.

Устройство и принцип действия
Полевой транзистор с изолированным затвором (МДП - транзистор) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. МДП - транзисторы (с

Статические характеристики МДП - транзисторов
Стоковые (выходное) характеристики полевого транзистора со встроенным каналом n- типа Ic = f(Uси) показаны на рис. 5.4, б. При Uзи = 0 через прибор протекает ток, определяемый исходной про

Простейший усилительный каскад на полевых транзисторах
В настоящее время широко применяются усилители, выполненные на полевых транзисторах. На рис. 5.9 приведена схема усилителя, выполненного по схеме с ОИ и одним источником питания.  

Тема 10. Составные транзисторы.
Составным транзистором называется соединение двух и более транзисторов, эквивалентное одному транзистору, но с большим коэффициентом усиления или другими отличительными свойств

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги