Проблемы выбора источников электрической энергии

Проблемы выбора источников электрической энергии. В основном, в качестве возможных источников электрической энергии рассматривют следующие 1 - фотоэлектронные с электрохимическим накоплением энергии - источники построенные на динамическом преобразовании солнечной энергии с термическим накоплением энергии - атомные энергетические установки 2. Для фотоэлекторнного преобразования солнечной энергии используются большие 8x8 см кремниевые элементы, которые устанавливаются на гибкие развертываемые панели.

Для накопления энергии применяют топливные элементы, никель- кадмиевые и никель-водородные батареи. Топливные элементы накапливают избыточную электрическую эенергию, получаемую от солнечных батерей, посредством генерации кислорода и водорода в процессе электролиза воды. Электроэнергия затем может быть получена из тепловой, которая выделяется при соединении накопленного кислорода и водорода. Такой метод накопления электрической энергии значительно гибок и топливные элементы значительно легче батарей, но имеет низкую эффективность и надежность. Никель-кадмиевые батареи изготавливаются на основе хорошо отработанной технологиии.

Они уже давно успешно используются в космических аппаратах, хотя низкая глубина - 5 - разряда приводит к значительному увеличению их массы.

Никель-водородные батарей были выбраны для космических платформ, так как они более надежны, чем топливные эементы, и при этом на 50 легче, чем никель-кадмиевые батареи. В настоящее время никель-водородные батареи используются на геостационарных орбитах. Но что на низкой орбите, где будет располагаться космическая станция, они будут испытывать гораздо больше циклов заряда-разряда в год. Проведенные испытания показали, что время работы никель- водородных батарей на низкой околоземной орбите составляет около пяти лет. Несмотря на то, что фотоэлектронные источники широко используются в космосе, солнечные динамические энергоустановки оказались более эффективными и менее дорогими.

Принцип работы солнечных динамических установок заключается в следующем солнечные лучи фокусируются параболическим отражателем на приемнике, который нагревает рабочее тело, приводящее в действие двигатель или турбину.

Затем механическая энергия преобразуется генератором в электрическую. Для накопления термической энергии используется соль, которая расплавливается в приемнике. Во время затемнения соль остывает и отдает тепло для расширения рабочего тела. Отражатель состоит из изогнутых треуголных пластин, с зеркальной поверхностью, установленных на гексогональных конструкцях соединенных 14-ти футовыми штангами с космической платформой 6 - Эффективность солнечной динамической энергоустановки составляет 20-30 для сравнения, эффективность кремниевых фотоэлементов составляет 14. Эффективность термического накопителя более 90, аккоммуляторных батарей - 70-80, топливных элементов - 55. Более высокая эффективность позволяет уменьшить площадь собирателя солнечной энергии, что облегчает решение проблем динамики станции.

Меньшее лобовое сопротивление особенно важно при размещении станции на низкой высоте - при том же расходе топлива и на той же орбите увеличивается время жизни станции.

Несмотря на то, что в настоящее время солнечные динамические энергоустановки еще не используются в космосе, уже существуюет мощная технологическая база, разработанная для применения в наземных и аэровоздушных условиях. В качестве рабочего тела применяют толиен органический цикл Ранкина с температурой подачи в турбину 750F или гелий-ксенон цикл Брайтона с температурой подачи в турбину 1300F. Установки с органическим циклом Ранкина мощностью от нескольких киловатт до нескольких сотен киловатт используются в наземных условиях. Установки с циклом Брайтона используются для электроснабжения систем управления газовых турбин многие из них имеют тысячи часов наработки.

В программе НАСА 1960 г. была испытана установка с рабочим циклом Брайтона, которая тестировалась 50,000 часов. Эта же установка затем была успешно испытана в вакуумной камере 7 - 2.