рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Методы мультиплексирования информационных потоков

Методы мультиплексирования информационных потоков - раздел Связь, Реконструкция волоконно-оптической линии связи Методы Мультиплексирования Информационных Потоков. Существует Несколько Спосо...

Методы мультиплексирования информационных потоков. Существует несколько способов увеличения пропускной способности систем передачи информации.

Большинство из них сводится к одному из методов уплотнения компонентных информационных потоков в один групповой, который передается по линии связи.

Поскольку большинство из методов уплотнения находит широкое применение в современных системах связи, рассмотрим каждый из них. 1.2.1. Метод временного мультиплексирования (ТDМ) В настоящее время метод временного уплотнения информационных потоков (TDM — Time Division Multiplexing) является наиболее распространенным.

Он применяется при передаче информации в цифровом виде. Суть его состоит в следующем.

Процесс передачи разбивается на ряд временных циклов, каждый из которых в свою очередь разбивается на N субциклов, где N — число уплотняемых потоков (или каналов). Каждый субцикл подразделяется на временные позиции, т.е. временные интервалы, в течение которых передается часть информации одного из цифровых мультиплексируемых потоков.

Кроме того, некоторое число позиций отводится для идентификационных синхроимпульсов, вставок и цифрового потока служебной связи.

Метод временного уплотнения подразделяется на два вида — асинхронное или плезиохронное, временное мультиплексирование (PDH, ATM) и синхронное временное мультиплексирование (SDH). Современные технологии позволяют обеспечить скорость передачи группового сигнала 10 Гбит/с (STM-64). Несколько лет назад считалось, что это предел для электронных устройств мультиплексирования.

Однако, благодаря развитию новых электронных технологий (полупроводниковые структуры на основе арсенида галлия, микровакуумных элементов) уже созданы лабораторные образцы электронных мультиплексоров для скорости 40 Гбит/с (STM-256), подготовленные для серийного промышленного производства [3]. Научные исследования в этой области продолжаются с целью дальнейшего увеличения скорости передачи. 1.2.2. Метод частотного уплотнения (FDM) При частотном методе мультиплексирования (FDM — Frequency Division Multiplexing) каждый информационный поток передается по физическому каналу на соответствующей частоте — поднесущей ƒпн. Если в качестве физического канала выступает оптическое излучение — оптическая несущая, то она модулируется по интенсивности групповым информационным сигналом, спектр которого состоит из ряда частот поднесущих, количество которых равно числу компонентных информационных потоков.

Частота поднесущей каждого канала выбирается исходя из условия ƒпн ≥ 10ƒвчп, где ƒпн — частота поднесущей, ƒвчп — верхняя частота спектра информационного потока.

Частотный интервал между поднесущими Δƒпн выбирается из условия Δƒпн ≥ ƒвчп. На приемной стороне оптическая несущая попадает на фотодетектор, на нагрузке которого выделяется электрический групповой поток, поступающий после усиления в широкополосном усилителе приема на входы узкополосных фильтров, центральная частота пропускания которых равна одной из поднесущих частот [3]. В качестве компонентных потоков могут выступать как цифровые, так и аналоговые сигналы, В настоящее время в кабельных системах передачи частотное уплотнение применяется в многоканальном кабельном телевидении, где для этой цели отведен диапазон частот 47 - 860 МГц, т.е. как метровый, так и дециметровый диапазоны ТВ. 1.2.3. Уплотнение по поляризации (PDM) Уплотнение потоков информации с помощью оптических несущих, имеющих линейную поляризацию, называется уплотнением по поляризации (PDM — Polarization Division Multiplexing). При этом плоскость поляризации каждой несущей должна быть расположена под своим углом.

Мультиплексирование осуществляется с помощью специальных оптических призм, например, призмы Рошона.

Поляризационное мультиплексирование возможно только тогда, когда в среде передачи отсутствует оптическая анизотропия, т.е. волокно не должно иметь локальных неоднородностей и изгибов. Это одна из причин весьма ограниченного применения данного метода уплотнения. В частности, он применяется в оптических изоляторах, а также в оптических волоконных усилителях, которые используются в устройствах накачки эрбиевого волокна для сложения излучения накачки двух лазеров, излучение которых имеет выраженную поляризацию в виде вытянутого эллипса [3]. 1.2.4. Многоволновое мультиплексирование оптических несущих (WDM) Решение задачи дальнейшего роста пропускной способности ВОСП путем увеличения скорости передачи при помощи TDM ограничивается не только технологическими сложностями при электронном временном уплотнении, но и ограничениями, вызванными временной (хроматической) дисперсией оптических импульсов в процессе их распространения в ОВ. Это наглядно видно из сопоставления допустимых величин хроматической дисперсии для систем передачи STM-16 и STM-64 соответственно: 10500 пс/нм и 1600 пс/нм и поляризационной модовой дисперсии — 40 пс и 10 пс. Указанная выше задача успешно решается с помощью оптического мультиплексирования с разделением по длинам волн — WDM (Wavelength Division Multiplexing). Суть этого метода состоит в том, что m информационных цифровых потоков, переносимых каждый на своей оптической несущей на длине волны λm и разнесенных в пространстве, с помощью специальных устройств — оптических мультиплексоров (ОМ) — объединяются в один оптический поток λ1 λm, после чего он вводится в оптическое волокно.

На приемной стороне производится обратная операция демультиплексирования.

Примерная структурная схема такой системы с WDM представлена на рис. 1.1. Оптические параметры систем WDM регламентируются рекомендациями, в которых определены длины волн и оптические частоты для каждого канала.

Согласно этим рекомендациям, многоволновые системы передачи работают в 3-ем окне прозрачности ОВ, т.е. в диапазоне длин волн 1530-1565 нм. Для этого установлен стандарт длин волн, представляющий собой сетку оптических частот, в которой расписаны регламентированные значения оптических частот в диапазоне 196,1-192,1 ТГц с интервалами 100 ГГц и длины волн - 1528,77-1560,61 нм с интервалом 0,8 нм. Стандарт состоит из 41 длины волны, т.е. рассчитан на 41 спектральный канал.

Но на практике используется 39 каналов из представленной сетки частот, поскольку два крайних не используются, так как они находятся на склонах частотной характеристики оптических усилителей, применяемых в системах WDM. Рис. 1.1. Простейшая структурная схема системы передачи WDM. В последнее время установилась четкая тенденция уменьшения частотного интервала между спектральными каналами до 50 ГГц и даже до 25 ГГц, что приводит к более плотному расположению спектральных каналов в отведенном диапазоне длин волн (1530-1565 нм). Такое уплотнение получило название DWDM. Очевидно, что DWDM вызвано стремлением увеличить количество передаваемых каналов.

Отметим также, что в настоящее время аббревиатура DWDM закрепилась и для систем с многоволновым уплотнением, у которых частотный интервал между каналами равен 100 ГГц. В настоящее время в оборудовании систем связи с DWDM, рассчитанных для передачи до 32-х каналов, ряд фирм применяет длину волны 1510 нм, а некоторые — 1625 нм. Но с увеличением количества передаваемых каналов до 128 и более возникает необходимость освоения более длинноволновой части оптического спектра, в частности L-диапазона (или 4-е окно прозрачности ОВ), в который будет входить длина волны 1625 нм. Создание систем передачи DWDM потребовало разработки целого ряда как активных, так и пассивных квантовых и оптических элементов и устройств с высокостабильными параметрами. Сюда относятся полупроводниковые лазеры с узкой спектральной шириной линии излучения (менее 0,05 нм) при стабильности не хуже ± 0,04 нм. Волоконно-оптические усилители должны иметь стабильный коэффициент усиления, малую неравномерность коэффициента усиления, (< ± 0,5 дБ) во всем спектральном диапазоне усиления и ряд других характеристик.

Среди пассивных элементов наиболее ответственными являются оптические мультиплексоры/ демультиплексоры для большого количества каналов при работе в одном окне прозрачности (1530-1565 нм). Расстройка по длине волны этих элементов не должна превышать 0,05 нм. Такая стабильность обеспечивается жесткой температурной стабилизацией этих элементов с точностью не хуже ± 1°С. Все это резко повышает стоимость систем DWDM. Глава 2.

– Конец работы –

Эта тема принадлежит разделу:

Реконструкция волоконно-оптической линии связи

Эта тенденция в основном связана с увеличением числа пользователей Internet и также с растущим взаимодействием международных операторов и… Полоса пропускания в расчете на одного пользователя стремительно… Поэтому поставщики средств связи при построении современных информационных сетей используют волоконно-оптические…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Методы мультиплексирования информационных потоков

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Обоснование реконструкции магистральной ВОЛС
Обоснование реконструкции магистральной ВОЛС. На участке Тюмень - Ялуторовск проложен волоконно-оптический кабель Fujikura OGNMLJFLAP-WAZE SM•10/125x8C тип 3, по которому осуществляется работа цифр

Основы синхронной цифровой иерархии
Основы синхронной цифровой иерархии. Структура первичной сети предопределяет объединение и разделение потоков передаваемой информации, поэтому используемые на ней системы передачи строятся по иерар

Основные сведения о ВОЛС
Основные сведения о ВОЛС. В волоконно-оптических системах передачи (ВОСП) информация передается электромагнитными волнами высокой частоты, около 200 ТГц, что соответствует ближнему инфракрасному ди

Оптическое волокно. Общие положения
Оптическое волокно. Общие положения. Важнейший из компонентов ВОЛС - оптическое волокно. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое. Свое название волокна получи

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги