ПРИНЦИП ДЕЙСТВИЯ СВЕТОДИОДОВ

ПРИНЦИП ДЕЙСТВИЯ СВЕТОДИОДОВ. В качестве некогерентных излучателей можно использовать сверх миниатюрные накальные и газоразрядные лампочки, порошковые, пленочные люминофоры, светоизлучающие диоды и т.д. Однако требованиям предъявляемым к оптоэлектронному прибору, удовлетворяют лишь светоизлучающие диоды, характеризующиеся высокой эффективностью прямого преобразования электрической энергии в световую, надежностью и большим сроком службы, устойчивостью к механическим и климатическим воздействиям, высоким быстродействием.

Целесообразно разделить светодиоды на две группы: 1) светодиоды, излучающие в видимом диапазоне спектра и используемые, главным образом, для отображения информации; 2) ИК светодиоды, применяемые в оптронах и волоконно-оптических линиях связи.

Хотя изготавливают светодиоды обеих групп из различных полупроводниковых материалов, принцип действия их одинаков и основан на явлении спонтанной инжекционной электролюминисценции – инжекции неосновных носителей в активную область прямосмещенного p-n гомо - или гетероперехода с последующей излучательной рекомбинацией в этой области.

Специфика процессов инжекции в светодиодах заключается в том, что одна из областей p-n-перехода должна быть оптически активна, т.е. должна обладать высоким внутренним квантовым выходом излучения.

Как известно, полное число излучательных переходов в единице объема при межзонной рекомбинации равно произведению, где В – коэффициент рекомбинации; np – неравновесная концентрация электронов в активной p-области; pp0 – равновесная концентрация дырок в этой области.

Очевидно, что p-n-переход с высоким внутренним квантовым выходом ηвн, равным отношению числа генерируемых в базе фотонов к числу инжектированных в нее неосновных носителей, должен быть изготовлен из прямозонного полупроводника, для которого В 10-10 см3/с (для непрямозонных полупроводников В≈10-14 см3/с). В отношении уровня легирования p - и n-областей возникают противоречивые требования: с одной стороны, для увеличения np необходимо, чтобы коэффициент инжекции γп→1, а это связано с понижением уровня легирования базы Na; с другой стороны, для увеличения pp0 этот уровень следует повышать.

Как правило, выбирают компромиссный вариант: оптимальный уровень легирования активной области составляет 1017 – 1018 см-3 для доноров и 3.1018 – 3.1019 см-3 для акцепторов. Кардинальное решение данной проблемы дает использование гетеропереходов.

В этом случае благодаря эффекту суперинжекции можно получить заданное np при не очень сильно легированном эмиттере. Односторонняя инжекция (γп→1) обеспечивается за счет разницы в ширине запрещенных зон используемых полупроводников: . Межзонные излучательные переходы конкурируют с безызлучательными и излучательными переходами, связанными с рекомбинацией через промежуточные состояния (дефекты структуры, посторонние примеси и включения, глубокие примесные центры, поверхностные состояния и т.д.). Все эти конкурирующие переходы, которые можно охарактеризовать некоторым эффективным временем жизни τбезизл, снижают величину ηвн, поскольку сопровождаются исчезновением инжектированных в базу носителей для генерирования фотона соответствующей энергии. Снижение доли безызлучательной рекомбинации (увеличение τбезызл) – одна из важнейших задач технологии светодиодов, направленная на повышение ηвн. Для подавления безызлучательных переходов принимают разнообразные меры: 1) оптимизируют излучательные структуры с целью снижения концентрации дефектов на границах слоев, исключения безызлучательной рекомбинации на поверхности и т.д.; 2) используют качественные эпитаксиальные слои, полученные методами жидкостной, газовой или молекулярно-лучевой эпитаксии.

Из-за низкой температуры и невысокой скорости роста таких слоев резко снижается плотность дислокаций и других дефектов структуры, концентрация посторонних примесей.

Например, в слоях Ga1-xAlxAs при x‹0.3, полученных методом жидкостной эпитаксии, вероятность безызлучательной рекомбинации сведена практически к нулю (τбезызл→∞) , и, следовательно, ηвн приближается к 100%. Важной задачей является также снижение доли поглощаемого внутри кристалла излучения.

Существует три метода борьбы с этим явлением. Уменьшение энергии фотонов за счет компенсации примесей в активной области. По такому принципу созданы эпитаксиальные p-n-структуры в GaAs, легированным кремнием, в которых генерируются фотоны с энергией, меньшей ширины запрещенной зоны (hvизл‹Eg). При этом коэффициент поглощения не превышает 100 см-1. В GaAs: Si-структурах ηвн составляет 40 – 70%. Основным недостатком таких структур является невысокое быстродействие.

Использование непрямозонных полупроводников в частности GaP. Известно, вероятность межзонной рекомбинации в GaP невелика (В 5.10-14 см3/с), однако при наличии подходящего промежуточного примесного центра она резко возрастает.

К сожалению, выбор таких центров ограничен. Так, для GaP ими могут служить азот и комплексы Zn-O. Эти центры создают глубокие энергетические уровни в запрещенной зоне, поэтому потери на межзонное поглощение отсутствуют ( ). Использование эффекта «широкозонного окна» в гетероструктурах. Следует отметить, что применение гетероструктур в светодиодах выгодно и по другим причинам. Благодаря эффектам «электронного» ограничения и суперинжекции можно резко повысить концентрацию неосновных носителей в активной области и достигнуть высокого внутреннего квантового выхода при малых прямых токах.

В таких случаях рекомбинация носителей происходит в ограниченной по размерам области, в которой концентрация неравновесных носителей повышается в раз по сравнению с гомопереходом при этом же уровне возбеждения (L – диффузионная длина неосновных носителей, d – толщина базы).