рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Детектирование АМ сигналов

Детектирование АМ сигналов - раздел Связь, Теория электрической связи. Конспект лекций ...

У АМ сигнала информация о модулирующем сигнале заключена в огибающей , следовательно необходим амплитудный детектор (детектор огибающей).По определению такой ФУ должен осуществлять измерение огибающей входного сигнала, т.е. формировать выходной сигнал вида uвых(t) = Кдет×А(t). Простейшая схема детектора огибающей на нелинейной основе приведена на рис. 3.24. В ней в качестве нелинейного элемента для обогащения спектра тока i низкочастотными составляющими модулирующего сигнала (напомним, что их нет в спектре входного АМ сигнала u1(t) ) используется диод. Для подавления высокочастотных спектральных составляющих (АМ сигнала и побочных продуктов нелинейного преобразования) служит простейший ФНЧ 1-го порядка – нагрузочная RC цепь. На рис. 3.25 приведены спектры входного u1(t) и выходного uн (t) напряжений, тока i диода и зависимость модуля сопротивления нагрузки от частоты zRC(w), вытекающие из приведённых рассуждений.

Проанализируем работу диодного детектора огибающей в режиме сильного сигнала. В этом случае целесообразно воспользоваться кусочно-линейной аппроксимацией вольтамперной характеристики (ВАХ) диода и расчёт вести методом угла отсечки. Можно наметить следующую последовательность рассуждений:

· для вычисления uн(t) при известной нагрузке (R и C) надо предварительно определить ток i,

· для вычисления тока i при выбранном диоде (известной ВАХ ) надо знать напряжение на нём uд,

· для определения напряжения , надо знать искомое напряжение uн(t)

 

В результате образовался «замкнутый круг» – вычисление искомой функции требует знания её самой на стадии промежуточных вычислений. Для его «разрыва» воспользуемся методом итераций (последовательных приближений), суть которого в том, что задаются начальным («нулевым») приближением к искомой функции и производят вычисление её «первого» приближения по выше намеченной процедуре (в обратном порядке):

1) ,

2) ,

3) через и известные R и C,

4) сравнивают разность с допустимой погрешностью.

При циклическом повторении этой процедуры с ростом числа приближений возможны два варианта:

· процесс последовательных приближений сходится к истинному решению,

· процесс расходится.

В первом случае цикл прерывают по достижении заданной точности вычислений. Второй случай может свидетельствовать о «плохом» выборе «нулевого» приближения.

Для «удачного» выбора «нулевого» приближения и существенного сокращения числа итераций рекомендуется использование квазилинейного метода, в основе которого лежит допущение о форме искомого колебаний (вида функции), которым задаются с точность до его параметров.

Так, в нашем случае анализа диодного детектора, в качестве «нулевого» приближения к искомому напряжению на нагрузке примем постоянное напряжение , не задавая его численно. Основания для этого чисто физические – напряжение на выходе ФНЧ не может быстро меняться во времени. Тогда, в соответствии с методом угла отсечки (см. рис. 3.26), имеем

;

где ;

,

где S – крутизна наклонного участка ВАХ диода;

. (3.6)

Уравнивая , мы имеем возможность численно определить U0 и завершить процесс итераций.

Из (3.6) вытекает следующий результат

, (3. 7)

на основе которого можно сделать следующие выводы:

1. Угол отсечки q и, соответственно, Кдет не зависят от огибающей А, следовательно, детектирование в режиме сильного сигнала осуществляется линейно.

2. Для повышения эффективности детектирования (увеличения Кдет) следует стремиться к уменьшению угла отсечки q, что достигается увеличением произведения S×R.

3. Выражение (3.7) можно использовать в качествеформулы для расчёта сопротивления R нагрузки после выбора диода (становится известной крутизна S его ВАХ) и величины Кдет.

4. Величину ёмкости С нагрузки следует определять из очевидного неравенства .

Проведём анализ детектора огибающей в режиме слабого сигнала.

В этом случае ВАХ диода целесообразно аппроксимировать полиномом второй степени

.

Ограничимся определением «первого» приближения , приняв . Тогда и

.

В результате имеем (с учетом очевидного )

.

При простом АМ сигнале, когда

.

Из полученного результата видно, что детектирование сопровождается нелинейными искажениями с коэффициентом гармоник

и можно сделать следующие выводы:

1. В режиме слабого сигнала имеет место квадратичное детектирование, сопровождаемое нелинейными искажениями.

2. Величина нелинейных искажений, определяемая, зависит от коэффициента модуляции m ().

– Конец работы –

Эта тема принадлежит разделу:

Теория электрической связи. Конспект лекций

Содержит общие сведения о системах связи, описание моделей детерминированных сигналов. Рассмотрены преобразования сигналов в типовых функциональных узлах систем связи (модуляторах и детекторах разных видов, перемножителях и преобразователях частоты сигналов). Приведены контрольные вопросы по всем разделам для самопроверки их усвоения и рекомендации по проведению сопутствующих экспериментальных исследований в виртуальной учебной лаборатории по курсу ТЭС. Материал соответствует действующей учебной программе по курсу ТЭС...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Детектирование АМ сигналов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Информация, сообщения, сигналы
Под информацией понимают совокупность каких-либо сведений о явлениях, объектах и т.п. Сообщения представляют собой материальную форму существования информации и могут иметь различную

Классификация сигналов
По относительной ширине спектра сигналы делят на низкочастотные (называемые также НЧ, видео, широкополосные сигналы) и высокочастотные (ВЧ, радио, узкополосные, полосовые сигналы).  

Обобщенная структурная схема системы связи
Под системой связи (СС) понимают совокупность технических средств и среды распространения сигнала, служащих для передачи сообщений от источника к получателю. Обобщенная структурная схема

Классификация систем связи
По виду передаваемых сообщений различают: 1) телеграфию (передача текста), 2) телефонию (передача речи), 3) фототелеграфию (передача неподвижных и

Рекомендации по проведению экспериментальных исследований сигналов в системах связи
Рис. 1.3.

пространств
Сигналы – это, прежде всего, процессы, т.е. функции времени x(t), существующие на ограниченном интервале Т (в теории возможно Т → ∞). Их можно изобразить гра

Метрические пространства
Первое свойство, которым мы наделим пространство сигналов, называют метрикой. Метрическое пространство – это множество с подходящим образом определенным расстоянием между его элеме

Линейные пространства
Усовершенствуем структуру пространства сигналов, наделив его простыми алгебраическими свойствами, присущими реальным сигналам, которые можно алгебраически складывать и умножать на числа.

Нормированные пространства
Следующий наш шаг в совершенствовании структуры пространства сигналов – объединение геометрических (характерных для метрических пространств) и алгебраических (для линейных пространств) свойств путе

Пространства со скалярным произведением
Введем еще одну дополнительную геометрическую характеристику (операцию) в пространстве сигналов в виде отображения упорядоченной пары векторов на поле скаляров из F. Эту операцию называют

Разложение сигналов в обобщенный ряд Фурье
Введем в пространстве L2(T) базис {ψi(t)}. Для упрощения последующих вычислений будем полагать, что он ортонормированный, т.е. отвечает

Спектры периодических сигналов
Периодическими называют сигналы, обладающие следующим свойством x(t) = x(t – kT), где Т – период, k = 0, ±1, ±2, ±3,… . Как известно, т

Спектры Т-финитных сигналов
Т-финитными называют ограниченные по времени сигналы. По определению они не могут быть периодическими и, следовательно, к ним не применимо разложение в ряды Фурье. Чтобы получить адекватн

Свойства преобразования Фурье
1. Прямое и обратное преобразование Фурье являются линейными операторами, следовательно, действует принцип суперпозиции. Если

Рекомендации по проведению экспериментальных исследований ортогональности и спектров сигналов
Для закрепления полученных в разделе 2.1 знаний полезно провести экспериментальные исследования на базе лабораторной работы № 5 «Ортогональность сигналов» (из перечня тем виртуальной учебной лабора

Дискретизация и восстановление сигналов
  Под дискретизацией сигналов (в узком смысле) понимают преобразование аналогового сигнала x(t) в последовательность отсчётов его мгновенных значений, взятых через инте

Рекомендации по проведению экспериментальных исследований дискретизации и восстановления сигналов
  Для закрепления полученных в разделе 2.4 знаний полезно выполнить лабораторную работу № 3 «Дискретизация и восстановление сигналов» (из перечня тем виртуальной учебной лаборатории)

Квазигармоническое представление сигналов
Во многих случаях сигнал удобно записывать в

Свойства аналитического сигнала
1. Аналитический сигнал является естественным обобщением символического изображения гармонического колебания

через его квадратурные компоненты
Любой действительный сигнал можно записать в

исследований компонентов аналитического сигнала
  Для закрепления полученных в разделе 2.5 знаний по квазигармоническому представлению сигналов целесообразно на базе лабораторной работы № 29 «Аналитический сигнал» провести экспери

в типовых функциональных узлах систем связи
К анализу и синтезу функциональных узлов (ФУ) систем связи можно подходить с позиций «чёрного ящика», имеющего один или несколько входов и выход (рис. 3.1). Входные сигналы ФУ называют воздействиям

Линейные преобразования сигналов и ФУ
Линейные ФУ по определению описываются линейными дифференциальными уравнениями (в том числе нулевого порядка для резистивных цепей) с постоянными коэффициентами. С точки зрения схемотехники это зна

Параметрические преобразования сигналов и ФУ
По определению параметрические ФУ описываются линейными дифференциальными уравнениями (в том числе нулевого порядка для резистивных цепей), у которых есть коэффициенты, зависящие от независимой пер

Нелинейные преобразования сигналов и ФУ
Нелинейные преобразователи сигналов описываются нелинейными дифференциальными уравнениями (в том числе нулевого порядка для резистивных цепей), у которых хотя бы один коэффициент зависит от их реше

Рекомендации по проведению экспериментальных исследований преобразований сигналов в линейных, нелинейных и параметрических ФУ
Для закрепления полученных в разделе 3.1 знаний полезно выполнить лабораторные работы № 2 «Линейная фильтрация сигналов» (рис. 3.5), № 6 «Преобразования сигналов в нелинейных цепях» (рис. 3.6) и №

Перемножение сигналов

Амплитудная модуляция
Модуляция в системах связи используется тогда, когда непосредственная передача первичного сигнала по линии связи оказывается невозможной. Согласование передаваемого сигнала с характеристиками линии

Спектр простого АМ сигнала.
Модулированный сигнал называют простым, если в качестве модулирующего сигнала

Спектр сложного АМ сигнала
На основе выражения (3.2) спектр сложного АМ сигнала при полигармоническом модулирующем сигнале можно записать в виде

Спектр АМ сигнала содержит:
а) несущее колебание на частоте wн, б) верхнюю боковую полосу(ВБП), представляющую собой спектр модулирующего сигнала

Энергетика АМ сигналов
Определим мощность простого АМ сигнала, понимая под ней среднее за период несущего колебания значение квадрата сигнала (3.2)

Векторная диаграмма простого АМ сигнала

Построение амплитудных модуляторов

Другие виды линейной модуляции (БМ, ОМ, КАМ)
Амплитудная модуляция относится к линейным видам модуляции вследствие линейной зависимости модулированного сигнала от модулирующего (3.1). Выше отмечалась её низкая энергетическая эффективность. Пе

Рекомендации по проведению экспериментальных исследований получения АМ, БМ, ОМ и КАМ сигналов
Для закрепления полученных в разделе 3.3 и 3.4 знаний полезно выполнить лабораторные работы № 8 «Амплитудная модуляция» в полном объёме (рис. 3.22) и № 11 «Линейные виды модуляции и синхронное дете

с линейными видами модуляции
При приёме модулированных сигналов над ними необходимо выполнять операцию обратную модуляции, т.е. преобразование, в результате которого будет получен сигнал, пропорциональный модулирующему на пере

Детектирование БМ, ОМ и КАМ сигналов
Рассмотренный выше детектор огибающей не пр

Детектирование АМ сигналов
В этом случае . На выхо

Детектирование и разделение КАМ сигналов
В этом случае (см. рис 3.21) .

Рекомендации по проведению экспериментальных исследований детектирования АМ, БМ, ОМ и КАМ сигналов
Для закрепления полученных в разделе 3.5 знаний целесообразно выполнить лабораторные работы № 9 «Детектирование АМ сигналов» (рис. 3.29), № 21 «Детектор огибающей сигнала» (рис. 3.30) в полных объё

Преобразование частоты сигналов
  Преобразованием частоты называют перенос (транспонирование) спектра сигнала (обычно узкополосного) по оси частот «вверх» или «вниз» на некоторое расстояние wг, задаваемо

Угловая (ЧМ и ФМ) модуляция
При угловой модуляции (УМ) информация о модулирующем сигнале закладывается в полную фазу

Векторная диаграмма колебания с УМ
Из аналитического выражения колебания с УМ (3.8) видно, что его амплитуда U0 сохраняется неизменной, следовательно, вектор комплексной амплитуды

Методы осуществления угловой модуляции
Различают два основных метода осуществления угловой модуляции – прямой и косвенный. По прямому методу реализуют частотные модуляторы на основе генераторов, частота колебаний которых управляется вне

Детектирование ФМ сигналов
Для детектирования ФМ сигналов можно использовать ранее рассмотренный синхронный детектор (рис. 3.27). При

Детектирование ЧМ сигналов
Для построения частотных детекторов используются два метода связанные с преобразованием вида модуляции: 1) преобразование ЧМ в АМ с последующим амплитудным детектированием,

Рекомендации по проведению экспериментальных исследований ФМ и ЧМ сигналов и фазового детектора
Для закрепления полученных в разделе 3.7 знаний полезно выполнить лабораторную работу № 4 «Модулированный сигналы» (из перечня тем виртуальной учебной лаборатории) в части исследования сигналов с ф

при передаче дискретных сообщений
При передаче дискретных сообщений – последовательностей кодовых символов

при ЦЧМ

Рекомендации по проведению экспериментальных исследований формирования сигналов с разными видами цифровой модуляции
  Для закрепления полученных в разделе 3.9 знаний полезно выполнить лабораторные работы № 23 ÷ №28, связанные с исследованиями процессов формирования сигналов с разными видами

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги