рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

помехоустойчивости основных видов цифровой модуляции

помехоустойчивости основных видов цифровой модуляции - раздел Связь, Теория электрической связи. Конспект лекций - 2 часть   Для Сравнения Помехоустойчивости Основных Видов Цифровой Мод...

 

Для сравнения помехоустойчивости основных видов цифровой модуляции АМ, ЧМ (при использовании ортогональных сигналов) и ФМ достаточно для каждого из них определить эквивалентную энергию ЕЭ разностного сигнала sэ(t) = s1(t) – s0(t) или расстояние между этими сигналами и воспользоваться выражением (6.20). Сравнение удобно выполнять на энергетической основе, т.е. определять соотношение энергий сигналов с разными видами модуляции, при котором обеспечиваются равные вероятности ошибочного приема. На рис. 6.27. в двумерном пространстве показаны векторы сигналов s0(t), s1(t) с равными энергиями и sэ(t) для: а) АМ (при s0(t) = 0), б) ЧМ и в) ФМ.

Из этих рисунков и (6.20) следует:

(6.21)

(6.22)

(6.23)

где .

Для достижения одинаковой помехоустойчивости (РАМ = РЧМ = РФМ) энергия сигналов Е при ЧМ должна быть в 2 раза, а при ФМ – в 4 раза меньше чем при АМ, т.е. по пиковой мощности ЧМ обеспечивает двукратный, а ФМ четырехкратный энергетический выигрыш по сравнению с АМ. По средней мощности выигрыши ЧМ и ФМ уменьшаются в 2 раза за счет пассивной паузы при АМ.

Таким образом, при равных энергиях сигналов наибольшей помехоустойчивостью обладает система с ФМ (использующая противоположные сигналы), наименьшей – система с АМ (с пассивной паузой). Система с ЧМ, использующая ортогональные сигналы, занимает промежуточное положение.

Следует отметить, что оптимальный порог в демодуляторе при использовании АМ не равен нулю, как при ЧМ и ФМ (при использовании сигналов с равными энергиями). Он зависит от энергии Е (мощности) сигнала, которая может быть неизвестной или изменяться в процессе передачи, что затрудняет практическую реализацию оптимального приема.

Полученные результаты имеют общий характер и относятся не столько к конкретному виду модуляции при использовании гармонического переносчика, сколько к выбору сигналов. В частности, формулы расчета средней вероятности ошибочного приема применимы для любых двоичных систем:

(6.21) - с пассивной паузой,

(6.22) – с ортогональными сигналами,

(6.23) – с противоположными сигналами.

Практическая реализация оптимального приема сигналов с наиболее помехоустойчивой модуляцией – ФМ является весьма проблематичной из-за чрезмерных требований к точности работы системы синхронизации:

1. При использовании согласованной фильтрации требуется высокая временная точность взятия отсчета реакции на выходе СФ (погрешность не должна превышать малой доли периода несущей частоты).

2. При использовании активного фильтра (коррелятора) столь же высокие требования предъявляются к фазовой погрешности опорного колебания.

Использование автономного опорного генератора в демодуляторе по этой причине исключается. Использование систем автоподстройки его частоты и фазы к соответствующим параметрам несущего колебания невозможно по причине отсутствия оного в спектре ФМ сигнала (при равновероятных сообщениях). Возможный выход из этой ситуации состоит в использовании различных схем восстановления несущего колебания из принимаемого сигнала, например, схемы Пистолькорса А.А., использующей последовательно включенные умножитель и делитель частоты в два раза (рис. 6.28). Однако, все схемы такого рода обладают существенным недостатком – неоднозначностью фазы (0 или π) восстановленного колебания несущей частоты, что может приводить к так называемой «обратной работе», когда принимаемые сообщения инвертируются, т.е. вместо 0 регистрируются 1 и наоборот.

Эффективный способ решения этих проблем был предложен Н.Т.Петровичем путем перехода к относительной фазовой модуляции (ОФМ). При ОФМ сообщение («0» или «1») передается не абсолютным значением фазы несущего колебания (0 или π), а разностью фаз текущего и предшествующего сигналов, т.е. «0» передается сохранением фазы колебания, а «1» ее изменением на π. Систему с ОФМ можно рассматривать как систему с ФМ со специальным перекодированием кодовых символов bk в ck на входе фазового модулятора по правилу ck = bk Å ck-1. Символ Å означает суммирование по модулю 2 (логическую операцию «исключающее ИЛИ»). Принимать сигналы с ОФМ можно с помощью фазовых демодуляторов (рис. 6. 18) с последующим обратным перекодированием выходных символов (рис. 6.29). В этой схеме обратное перекодирование осуществляется логическим элементом «исключающее ИЛИ» (символ «=1» на УГО) совместно с элементом задержки на Т.

Определим вероятность ошибочного приема в системе с ОФМ при когерентном приеме. Поскольку в формировании выходного символа участвуют символы и , ошибочный прием имеет место при выполнении одного из двух условий:

1. символ принят верно, а символ ошибочно,

2. символ принят ошибочно, а символ верно.

Каждое из этих условий реализуется с вероятностью РФМ(1-РФМ). Таким образом получаем . Поскольку требуется обеспечивать , то

.

Таким образом, «платой» за переход от ФМ к ОФМ для устранения «обратной работы» является удвоение средней вероятности ошибочного приема.

На рис. 6.30 приведены кривые помехоустойчивости когерентного приема в двоичных системах, рассчитанные по выше полученным формулам.

 

– Конец работы –

Эта тема принадлежит разделу:

Теория электрической связи. Конспект лекций - 2 часть

Предназначено для студентов, изучающих дисциплину «Теория электрической связи». Материал соответствует действующей учебной программе по курсу ТЭС...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: помехоустойчивости основных видов цифровой модуляции

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие случайного процесса
xk(t)     x1(t) x2(t)     ti

Сокращенное описание случайных процессов
Полное описание СП не всегда возможно, да и не всегда требуется. Во многих случаях достаточно знать основные его характеристики. В качестве таковых широко используют: 1. Математическое

центральные
. Нетрудно видеть, что моменты полностью определяются одномерным распредел

Некоторые свойства корреляционной функции СП:
1. 2.

Спектральный анализ случайных процессов
  Спектральный анализ детерминированных сигналов x(t) предпо-лагает использование прямого преобразования Фурье

Свойства энергетических спектров случайных процессов
1. , что непосредственно следует из его определения (4.1). Из этого факта и соотноше

исследований случайных процессов
  Для закрепления полученных при изучении раздела 4 знаний на базе виртуальной лаборатории можно провести экспериментальные исследования случайных процессов используя: · о

преобразователи сигналов
  В общем случае решение задачи прохождения заданного СП через конкре

через безынерционные цепи
  Безынерционная цепь (безынерционный функциональный узел –БФУ) полностью описывается функциональной зависимостью y = f(x), связывающей мгновенные значения возде

Функциональное преобразование двух случайных процессов
Постановка задачи: Заданы два случайных процесса X1(t) и X2(t) с известной совместной плотностью вероятности их значений в совпада

Прохождение случайных процессов через линейные цепи
  Общей процедуры определения закона распределения реакции линейного ФУ на произвольное случайное воздействие не существует. Однако, возможен корреляционный анализ, т. е. расчет корр

прохождения случайных процессов через различные ФУ
  Для закрепления знаний, полученных при изучении данного раздела рекомендуется выполнить в рамках виртуальной лаборатории работу № 20 «Прохождение случайных процессов через различны

Критерий идеального наблюдателя
(критерий Котельникова)   Этот критерий требует обеспечения минимума средней вероятности ошибочного приема. Для двоичной системы

Критерий максимального правдоподобия
  Полагая, что все передаваемые сообщения равновероятны ,

Критерий минимального среднего риска
(байесовский критерий)   Для учета разных последствий ошибок передачи различных сообщений следует обобщить критерий Котельникова, минимизируя сумму условных вероятно

Критерий Неймана-Пирсона
  Критерий Неймана-Пирсона применяется в двоичных системах в ситуациях, когда невозможно определить априорные вероятности отдельных сообщений, а последствия ошибок разного рода неоди

на согласованных фильтрах
  Сохраняя постановку задачи синтеза демодулятора из предыдущего раздела и опираясь на алгоритмы (6.13) и (6.14), попробуем заменить коррелятор (активный фильтр), вычисляющий скалярн

Свойства согласованных фильтров
1. Импульсная характеристика СФ является «зеркальным отражением» сигнала, с которым он согласован, относительно момента времени 0,5t0 (с точностью до постоянного коэффициен

Фазо-частотная характеристика СФ
отличается знаком от фазового спектра сигнала, с которым он согласован (б

Прямоугольные видеоимпульсы
Сигнал в виде прямоугольного видеоимпульса s(t) (рис. 6.8,а) и импульсная характеристика gСФ(t) согласованного с ним фильтра (рис. 6.8,б) описываются выражени

Прямоугольные радиоимпульсы
Сигнал в виде прямоугольного радиоимпульса s(t) описывается выражением

Сложные двоичные сигналы
Рассмотрим сигналы в виде n-последовательностей импульсов прямоугольной формы

Оптимальный когерентный прием при небелом шуме
Рассмотрим задачу синтеза согласованного фильтра, обеспечивающего максимальное отношение с/ш на своем выходе для случая, когда на его входе действует аддитивная смесь известного сигнала s(

оптимального когерентного приема
Для закрепления знаний, полученных при изучении разделов 6.1-6.3, целесообразно выполнить лабораторные работы № 15 «Исследование когерентных демодуляторов» (рис. 6.19, 6.20) и № 22 «Согласованная ф

некогерентного приема в двоичной системе связи
Для определения средней вероятности ошибки оптимального некогерентного приема в двоичной системе при равных вероятностях передаваемых сообщениях P(b0) = P(b

исследований некогерентного приема
  Для закрепления знаний, полученных при изучении разделов 6.6 и 6.7, целесообразно выполнить лабораторные работы № 16 «Исследование некогерентных демодуляторов» (рис. 6.40, 6.41) и

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги