рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Характеристики КИХ-фильтров с ЛФХ.

Характеристики КИХ-фильтров с ЛФХ. - раздел Связь, Дискретные сигналы определяются для дискретных значений независимой переменной - времени Пусть ...

Пусть - физически реализуемая последовательность конечной длины, заданная на интервале . Это конечная импульсная характеристика (КИХ).

Преобразование Фурье от {h(n)} – частотная характеристика фильтра:

является периодической по частоте с периодом , т.е.:

, где

Рассмотрим действительные последовательности. Тогда (ранее рассматривали), можно получить, что:

, при

т.е. модуль АЧХ – симметричная функция, а ФЧХ – симметричная.

На практике часто требуется строго линейная ФЧХ, т.е.:

где ;

- постоянная фазовая задержка, выраженная через число интервалов дискретизации.

 

Можно показать, что для этого необходимо, чтобы выполнялись следующие условия:

(*)

(**) h(n)=h(N-1-n) ;

Уравнение (**) - означает условие симметрии, чтобы ФЧХ была строго линейна.

Уравнение (*) – постоянная фазовая задержка.

Рассмотрим типичные импульсные характеристики, удовлетворяющие условию симметрии (**) при четно и нечетном N.

 

 

Уравнение при означает, что фильтр имеет постоянные как групповую (производная от ФЧХ по частоте), так и фазовую (отношение фазы к частоте) задержки.

Если постоянной будет только групповая задержка, можно определить еще один тип фильтра с ЛФХ, т.е.:

тогда условие ЛФХ:

h(n)=h(N-1-n) ;

Рассмотрим типичные импульсные характеристики, удовлетворяющие этим условиям:

 

 

 

Т.о. существуют 4 различных вида КИХ-фильтров с ЛФХ.

 

Частотные характеристики КИХ-фильтров с ЛФХ.

Фильтр вида 1: (симметричная импульсная характеристика, нечетное N)

Можно сказать, что ЧХ:

Фильтр вида 2: (симметричная импульсная характеристика, четное N)

Можно показать, что ЧХ:

Т.о. отметим, что у таких фильтров:

при независимо от значений b(n) bkb h(n), т.е. нельзя построить ФВЧ.

 

Фильтр вида 3: (антисимметричная импульсная характеристика, нечетное N)

 

В том случае ЧХ – ряд синусов:

Фильтр вида 4. (антисимметричная импульсная характеристика, четное N)

Частотная характеристика:

при .

 

 

Методы расчета КИХ-фильтров c ЛФХ

3 класса методов расчета:

1) Метод взвешивания с помощью окна

2) Методы постоянной выборки

3) Методы расчета оптимальных (по Чебышеву) фильтров

 

– Конец работы –

Эта тема принадлежит разделу:

Дискретные сигналы определяются для дискретных значений независимой переменной - времени

Последовательности и их представления.. дискретные сигналы определяются для дискретных значений независимой переменной времени..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Характеристики КИХ-фильтров с ЛФХ.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Где Т – интервал между отсчетами
n – целые числа, -5, -4, -3,…, 0, 1, 2, 3,… Обозначения последовательностей:    

Способы получения последовательностей.
  1)     Взять

Некоторые важные последовательности.
  1)     Цифро

Линейная система.
      x1(n) y1

Система с постоянными параметрами (ЛПП).
    x(n) y(n)

Необходимое и достаточное условие.
  Устойчивость системы:    

Разностные уравнения.
В общем виде линейное разностное уравнение М-го порядка с постоянными коэффициентами имеет вид:  

Частотная характеристика систем первого порядка.
  Рассмотрим разностное уравнение: С начальным условием: y(-1)=0  

Частотная характеристика систем второго порядка.
  Разностное уравнение:   (для простоты члены при коэффициентах b опущены, т.к.

Единицы измерения частоты
Запись: x(n), y(n), h(n) - опускается период дискретизации Т или – частота ди

Соотношение между непрерывными и дискретными системами.
Непрерывный сигнал: Спектр: (1) Временная область:

Спектральная функция дискретной последовательности состоит из суммы бесконечного числа спектральных компонент непрерывного колебания.
  Если спектр непрерывного колебания ограничен по полосе диапазоном частот , где Т – период дискретизации,

С какой частотой дискретизировать непрерывное колебание?
Если уменьшать частоту дискретизации, т.е. увеличивать Т, тогда может произойти: &nbs

Z-преобразования некоторых последовательностей
Единичный импульс Т.к. при всех n, кроме n=0, где x(n)=1,

Геометрическая интерпретация преобразования Фурье
Последовательность x(n), ее z-преобразование: Преобразование Фурье:

Структурные схемы фильтров без полюсов
В частном случае знаменатель дроби: может быть постоянным. Для прос

Дискретное преобразование Фурье
Методы описания последовательностей или дискретных систем: - дискретная свертка - преобразование Фурье - z-преобразование.   Когда последовательнос

Свойства ДПФ
1. Линейность xp(n) и yp(n) – периодичные последовательности с периодом N каждая. Xp(к) и Yp(к) – их ДПФ. Тогда для последоват

Порядок расчета цифрового фильтра
1. Решение задачи аппроксимации с целью определения коэффициентов фильтра, при которых фильтр удовлетворяет заданным требованиям:   2. Выбор конкретной схемы построения фильт

Свойства КИХ-фильтров.
  Основные достоинства этих фильтров: 1) Легко создавать КИХ-фильтры со строго линейной фазовой характеристикой. (Линейная фазовая характеристика особенно ва

Прямоугольное окно
N-точечное прямоугольное окно Весовая функция при

Метод взве шивания
Т.к. частотная характеристика ЦФ – периодическая функция частоты, ее можно представить рядом Фурье: (*) , где

Обобщенное окно Хэмминга
Окно имеет вид: при

Окно Кайзера
Задача расчета хороших окон практически сводится к математической задаче отыскания ограниченных во времени функций преобразования Фурье которых наилучшим образом аппроксимируют функции, ограниченны

ФНЧ с различными окнами
  Рассмотрим идеальный фильтр нижних частот. Будем использовать 3 окна: - прямоугольное - Хэмминга - Кайзера (в каждом по n=257 отсчетов)

Метод частотной выборки
Это второй метод проектирования КИХ-фильтров. КИХ-фильтр может быть однозначно задан как коэффициентами импульсной характеристики {h(n)}, так и коэффициентами ДПФ от импульсной характерист

Свойства БИХ-фильтров.
БИХ-фильтры – это цифровые фильтры с бесконечной импульсной характеристикой, при условии, что фильтры являются физически реализуемы:

Методы расчета коэффициентов БИХ-фильтров
  Необходимо решить задачу расчета коэффициентов фильтра ( и ), которые обеспечивали бы аппроксимацию заданных характеристик фильтра таких, как импульсная и частотная характеристики,

Расчет БИХ-фильтров по аналоговому прототипу
Передаточная функция агалогового фильтра – преобразование Лапласа от импульсной характеристики. Предположим, что:

Билинейное Z – преобразование.
   

Согласованное Z – преобразование.
  Непосредственное отображение полюсов и нулей из S – плоскости в полюсы и нули на Z – плоскости. Полюс (или нуль) в точке s = - a плоскости s отображается в полюс (или нуль)

Обзор методов расчета аналоговых фильтров нижних частот.
  Стандартные типы аналоговых фильтров: - Баттерворта - Чебышева 1 типа - Чебышева 2 типа - Кауэра (эллиптические фильтры)  

Фильтры Баттерворта.
  Апроксимация по Баттерворту – фильтры НЧ имеют максимально гладкую амплитудную характеристику в начале координат в S – плоскости. Для частоты среза:  

Фильтры второго типа.
    где Ωr - наименьшая частота, на которой достигается заданный ур

Эллиптические фильтры.
  Характеризуются тем, что их амплитудная характеристика имеет равновеликие пульсации в полосе пропускания и в полосе не пропускания. Можно показать, что с точки зрения миним

Частотные преобразования.
  Рассмотрим методы расчета ФНЧ непрерывных во времени, а так же методы их дискретизации. При расчете цифровых фильтров ВЧ, ПФ и режекторных, используются два подхода:  

Преобразование полосы частот аналоговых фильтров.
   

Преобразование полосы для ЦФ.
  ФНЧ с частотой среза в другой

Расчет ЦФ по квадрату амплитудной характеристики.
  Квадрат амплитудной характеристики:

Расчет БИХ фильтров во временной области.
  Это расчет по заданной импульсной характеристике Z – преобразование импульсной характеристики h(k) равно.

Алгоритм БПФ с основанием 2.
ДПФ конечной последовательности {x(n)} определено ранее:   W – является периодической по

Алгоритм БПФ с прореживанием по частоте.
  Другая распространенная форма алгоритма БПФ при условии, что N – равно степени 2 – алгоритм БПФ с прореживанием по частоте.   Разобьем входную последовательно

Вычисление обратного ДПФ с помощью алгоритма БПФ.
  Обратное ДПФ N – точечной последовательности {X(k)}; k=0, 1, … , N-1  

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги