рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Непериодические сигналы.

Непериодические сигналы. - раздел Связь, Телекоммуникаций и информатики Непериодические Сигналы Можно Представить В Виде Интеграла Синусоидальных Сиг...

Непериодические сигналы можно представить в виде интеграла синусоидальных сигналов с непрерывным спектром частот. Например, спектральное разложение идеального импульса (единичной мощности и нулевой длительности) имеет составляющие всего спектра частот, от - ∞ до + ∞ (см. рис.3.9).

Рис.3.9.Спектральное представление идеального импульса.

Чтобы представить в виде гармоник непериодический сигнал не на конечном интервале, а на всей оси, необходимо использовать множество гармоник с непрерывным набором частот. Такое представление можно записать следующим образом:

. (5)

То есть суммируются синусоиды с разными частотами, у каждой своя амплитуда и начальная фаза. Каждая составляющая синусоида называется также гармоникой, а набор всех гармоник называют спектральным разложением исходного сигнала. Формулы для краткости и удобства аналитических расчетов принято писать в комплексной форме:

, . (10)

Здесь , то есть действительная часть этой величины есть , а мнимая есть . Эти выражения называют прямым преобразованием и обратным преобразованием Фурье.

Техника нахождения спектра любого исходного сигнала хорошо известна. Для некоторых сигналов, которые хорошо описываются аналитически (например, для последовательности прямоугольных импульсов одинаковой длительности и амплитуды), спектр легко вычисляется на основании формул Фурье. Для сигналов произвольной формы, встречающихся на практике, спектр можно найти с помощью специальных приборов - спектральных анализаторов, которые измеряют спектр реального сигнала и отображают амплитуды составляющих гармоник на экране или распечатывают их на принтере. Искажение передающим каналом синусоиды какой-либо частоты приводит в конечном счете к искажению передаваемого сигнала любой формы, особенно если синусоиды различных частот искажаются неодинаково. Если это аналоговый сигнал, передающий речь, то изменяется тембр голоса за счет искажения обертонов - боковых частот. При передаче импульсных сигналов, характерных для компьютерных сетей, искажаются низкочастотные и высокочастотные гармоники, в результате фронты импульсов теряют свою прямоугольную форму (рис. 3.10). Вследствие этого на приемном конце линии сигналы могут плохо распознаваться.

Рис.3.10. Искажение импульсов в линии

Линия связи искажает передаваемые сигналы из-за того, что ее физические параметры отличаются от идеальных. Так, например, медные провода всегда представляют собой некоторую распределенную по длине комбинацию активного сопротивления, емкостной и индуктивной нагрузки (см. рис.). В результате для синусоид различных частот линия будет обладать различным полным сопротивлением, а значит, и передаваться они будут по-разному. Волоконно-оптический кабель также имеет отклонения, мешающие идеальному распространению света. Если линия связи включает промежуточную аппаратуру, то она также может вносить дополнительные искажения, так как невозможно создать устройства, которые бы одинаково хорошо передавали весь спектр синусоид, от нуля до бесконечности. Кроме искажений сигналов, вносимых внутренними физическими параметрами линии связи, существуют и внешние помехи, которые вносят свой вклад в искажение формы сигналов на выходе линии. Эти помехи создают различные электрические двигатели, электронные устройства, атмосферные явления и т. д. Несмотря на защитные меры, предпринимаемые разработчиками кабелей и усилительно-коммутирующей аппаратуры, полностью компенсировать влияние внешних помех не удается. Поэтому сигналы на выходе линии связи обычно имеют сложную форму, по которой иногда трудно понять, какая дискретная информация была подана на вход линии.

Одиночный прямоугольный импульс.

Пусть дан прямоугольный импульс с амплитудой А и длительностью t . На оси времени он задан положением середины импульса t0 (рис.3.11).

Рис. 3.11

Тогда аналитически сигнал можно описать следующим образом.

Определим выражение для спектральной плотности.

Если это выражение разделить на Т и подставить вместо w частоту nw 1 , то получим уже известное выражение для АЧС последовательности прямоугольных импульсов:

Нули модуля спектральной плотности расположены на частотах w =2p k/t , где k=± 1,± 2,... На частоте w =0 спектральная плотность равна S( 0 )=At .

На рис.3.12изображены графики АЧХ и ФЧХ прямоугольного импульса с учетом знака синуса.

Рис.3.12

Полная энергия импульса равна

Энергия сигнала, ограниченного первым лепестком спектральной плотности, составляет 90% мощности прямоугольного импульса.

– Конец работы –

Эта тема принадлежит разделу:

Телекоммуникаций и информатики

Федеральное агентство связи.. государственное образовательное учреждение.. высшего профессионального образования поволжский государственный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Непериодические сигналы.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

А.Г. Глущенко, Е.П.Глущенко
Введение в теорию колебаний. Конспект лекций. – Самара: ГОУВПО ПГУТИ, 2013. – 198 с.     Настоящее издание представляет собой учебное пособие к образовательному

Колебания в биологических объектах
Таким образом, колебания охватывают огромную область физических явлений и технических процессов. Классификация колебаний по характеру взаимодействия с окружающей средой

Гармонические колебания.
Гармоническое колебание —это колебание, при котором физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону

Аналитическое.
Колебательный процесс описывается в виде периодической функции, например,

Метод фазовых траекторий.
Метод описания колебаний путем построения траектории тражения системы в плоскости -

Траектория движения точки в плоскости называется фазовым портретом.
Особенно просто выглядит фазовая траектория гармонического колебания, при котором координата и скорость описываются функциями 

Способы представления колебательных движений: Аналитический, табличный, графический, спектральный, векторные диаграммы, фазовый портрет
Гармонические колебания являются простейшей моделью колебательного движения достаточно часто встречающегося в действительности. Любое колебание может быть представлено как сумма гармонических ко

Сложение гармонических колебаний одного направления
Если колеблющееся система или тело участвует в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические

Сложение взаимно перпендикулярных колебаний
Рассмотрим материальную точку, участвующую в двух взаимно перпендикулярных колебаниях по осям X и Y. Она будет двигаться по некоторой криволинейной траектории, форма которой зависит как от соотноше

Лекция. 3. Спектральное представление колебательных процессов.
  Обычной и естественной системой отсчета для нас является время. Мы наблюдаем, как развивается, то или иное событие во времени. Для наблюдения изменения во времени мгновенных значени

Зачем, собственно, нужно считать спектры сигналов?
Во-первых, это позволяет по-новому взглянуть на сигнал, лучше понять его природу, найти характерные частоты сигнала (если их несколько, то по виду самого сигнала это может быть затруднительно). Нап

Анализ сигнала не включающий определения фазовых соотношений между синусоидальными составляющими называется спектральным анализом.
У частотной области есть свои плюсы. Частотная область гораздо удобнее в плане измерений. Те, кто занимаются беспроводной связью, заинтересованы в определении внеполосного и паразитного излучения.

Гауссов импульс. Колоколообразный (гауссовский) импульс определяется выражением
Во временной области он изображен на рис. 14 а. Условно длительность такого импульса определяют по уровню е-1/ 2

Спектр широкополосного случайного процесса. Белый шум
Случайный процесс может быть назван широкополосным, если эффективная полоса частот его спектральной плотности мощности сравнима со средней частотой этой полосы, либо эта полоса значительно шире пол

Спектральный анализ
Спектральный анализ — совокупность методов качественного и количественного определения состава среды, основанная на изучении спектров взаимодействия материи с излучением, включая с

Непрерывные спектры дают тела, находящиеся в твердом, жидком состоянии, а также сильно сжатые газы.
Полосатые спектры в отличие от линейчатых спектров создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Полосатые спектры имеют твердые тела.

Лекция 4. Свободные колебания в системах с одной степенью свободы
Пружинный маятник (http://www.all-fizika.com/virtual/pryjin.php) Опишем движение небольшого бруска массой m, расположенного на гладкой горизонтальной поверхности и прикреп

Колебание жидкости в трубке.
Рассмотрим еще один пример колебательной системы. Пусть в вертикальной  U-образной трубке находится вода (рис. 4.8).

Свободные колебания в контуре
Цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром. Пусть конденсатор зарядили до заряда qo и затем подклю

Плазменные колебания.
В плазме возможно самопроизвольное смещение зарядов. Такое смещение зарядов вызовет колебательные движения зарядов. Рассмотрим упрощенный подход к решению задачи о нарушениbя квазинейтр

Лекция 5. Фазовый портрет колебательной системы.
В любой колебательной системе с одной степенью свободы смещение (t) и скорость меня

Положение равновесия в точке 0 на фазовой плоскости является особой точкой и называется особой точкой типа "центр".
Линейный осциллятор с затуханием. Диссипация энергии, обусловленная наличием потерь, оказывает принципиальное влияние на характер движения системы. Наиболее простые закономерно

Нелинейные колебания
С увеличением энергии возрастают амплитуды колебаний смещения и скорости

Затухающие механические колебания крутильного маятника
Свободные колебания реальных механических систем всегда затухают. Затухание возникает в основном из-за трения, сопротивления окружающей среды и возбуждения в ней упругих волн. Рассмотрим с

Период затухающих колебаний
. Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответст­вующих моментам времени,

Добротность
Пниях логарифмического декремента добротность равна (т

Уравнение вынужденных колебаний и его решение. Резонанс.
Потери механической энергии в любой колебательной системе из-за  наличия сил трения неизбежны, поэтому без «подкачки» энергии извне колебания будут затухающими. Существует несколько принципиа

Вынужденные электромагнитные колебания
Вынужденныминазываются такие колебания, которые происходят в колебательной системе под влиянием внешнего периодического воздействия.

Установление колебаний.
Мы уже отмечали, что если приложить к покоящемуся маятнику гармоническую силу в момент времени t=0, то маятник начнет постепенно раскачиваться, как это качественно изображено на рис. 2.7а. У

Лекция 8 Колебательные системы с двумя степенями свободы
  Связанные колебательные системы влияют друг на друга. Колебания таких систем уже не будут независимы, поскольку системы обмениваются энергией. Связь может быть обусловлена:

Лекция 8. Колебания систем со многими степенями свободы.
Основные идеи, сформулированные при рассмотрении колебаний систем с двумя степенями свободы, теперь могут быть с успехом использованы для анализа колебаний систем с тремя, четырьмя,

Колебания струны
Представим себе, что мы возбудили струну так, что по ней побежала поперечная упругая волна. Дойдя до закрепленного конца струны, волна отразится и побежит обратно. Тогда в любой точке струны встреч

Тоны и обертоны
Струна, оттянутая строго посередине, будет совершать колебания, показанные на рис. 8.3. Через каждые пол периода вся струна оказывается по разные стороны от положения равновесия. При этом на концах

Колебания воздушного столба
В духовых музыкальных инструментах (различных трубах) источником звука является колеблющийся столб воздуха, в котором, как и в струне, возникают стоячие волны. Его колебания возбуждаются вдуванием

Колебания струны, закрепленной с двух концов
Рис.8.7.   В силу граничных условий, заданных закреплением концов струны, уравнение стоячей волны при выбо

Лекция 9. Параметрические колебания. Качели.
Всем хорошо знакома и многими любима такая старинная забава как качели. Тренировкам на этом снаряде придает большое значение даже летчики и космонавты. Когда малыша, сидящего на качелях, раскачивае

Http://fizportal.ru/physics-book-47-1
http://jstonline.narod.ru/rsw/course_cont.htm#rsw_b0     Приложение 1. Основные характеристики звука Упругие волны в воздухе, имеющ

Закон Вебера-Фехнера. Диаграмма слуха.
Определение громкости звука основано на психофизическом законе, установленном в 1846 году Э.-Г. Вебером, который заложил основы "психометрии", т.е. количественных измерений ощущений. Поск

Некоторые сведения о музыкальных инструментах.
Деревянные деки музыкальных инструментов выполняют функции резонаторов, обеспечивая хорошие условия звучания. Частоты струнных инструментов не зависят от резонатора. Основная частота звука

Добротность различных колебательных систем
Интересно сопоставить основные характеристики различных колебательных систем (иногда их для краткости называют осцилляторами), наиболее распространенных в природе и технике. Примерами таких осцилля

Резонаторы
Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты в

Основные формулы механических и электромагнитных колебаний
  Пружинный маятник Колебательный контур Механические величины Электрические величины

Метод комплексных амплитуд
Если в формуле Эйлера (1.53): под понимать фазу гармонических колебаний

Вынужденные колебания с произвольной частотой.
Будем искать решение уравнения (2.10) в комплексном виде: (2.26)

Возбуждение стоячих волн в шнуре. Моды колебаний.
Пусть кронштейн, к которому привязан левый конец шнура, совершает гармонические колебания где

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги