рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Колебания воздушного столба

Колебания воздушного столба - раздел Связь, Телекоммуникаций и информатики В Духовых Музыкальных Инструментах (Различных Трубах) Источником Звука Являет...

В духовых музыкальных инструментах (различных трубах) источником звука является колеблющийся столб воздуха, в котором, как и в струне, возникают стоячие волны. Его колебания возбуждаются вдуванием воздуха через узкое отверстие на одном конце трубы. При таком вдувании возникает сжатие воздуха, что и дает начало колебаниям, а затем и волнам (аналогично оттягиванию струны). Правда, в отличие от струны, в воздушном столбе возникают не поперечные, а продольные упругие волны.

Труба может быть короткой или длинной, прямой или изогнутой. Другой ее конец может быть открытым или закрытым. Иногда вдуваемый воздух заставляет вибрировать тонкий упругий язычок, который передает колебания воздуху в трубе (кларнет), иногда вибрируют губы исполнителя, вызывая вибрации воздуха в трубе (корнет).

Высота звука здесь, как и в случае струны, зависит от линейных размеров. В открытой трубе основной тон возникает, когда на длине трубы укладывается 1/2 длины волны, а в закрытой — 1/4 длины волны (рис. 8.5). Высота тона зависит также от того, насколько сильно вдувается воздух, подобно тому как в струне она зависит от силы натяжения струны.

Рис.8.5

Наряду с основным тоном, в трубе возникают и обертоны с частотами, кратными основной частоте. При этом в открытой трубе возможны только такие обертоны, частоты которых представляют собой четные кратные частоте основного тона, а в закрытых трубах — нечетные кратные. Эти особенности связаны с тем, что на открытых концах трубы (а один из них всегда открытый) возможны только пучности смещений стоячей волны.

Музыкант может изменять действующую длину трубы, закрывая и открывая отверстия, сделанные вдоль трубы, с помощью клапанов или просто зажимая их пальцами (флейта, кларнет, дудка). В тромбоне, например, длина трубы, а вместе с тем и высота звука, изменяется с помощью скользящей U-образной приставки. В органе же длины труб неизменны, но зато число труб с самыми разными длинами чрезвычайно велико — до нескольких тысяч.

Оттянув струну посередине и отпустив, мы возбудим в ней колебание, изображенное на рис. 99, а. На концах струны получаются узлы, посередине — пучность.

С помощью этого прибора, меняя массу груза, натягивающего струну, и длину струны (перемещая добавочный зажим со стороны закрепленного конца), нетрудно экспериментально установить, чем определяется собственная частота колебания струны. Эти опыты показывают, что частота колебания струны прямо пропорциональна корню квадратному из силы натяжения струны и обратно пропорциональна длине струны, т. е.

.

Что касается коэффициента пропорциональности, то он зависит, как оказывается, только от плотности того материала, из которого сделана струна, и от толщины струны , а именно он равен . Таким образом, собственная частота колебаний струны выражается формулой

.

В струнных инструментах сила натяжения создается, конечно, но подвешиванием грузов, а растягиванием струны при накручивании одного из ее концов ни вращающийся стерженек (колок). Поворотом колка, т. е. изменением силы натяжения , осуществляется и настройка струны на требуемую частоту.

Поступим теперь следующим образом. Оттянем одну половинку струны вверх, а другую — вниз с таким расчетом, чтобы средняя точка струны не сместилась. Отпустив одновременно обе оттянутые точки струны (отстоящие от концов струны на четверть ее длины), мы увидим, что в струне возбудится колебание, имеющее, кроме двух узлов на концах, еще узел посередине (рис. 99, б) и, следовательно, две пучности. При таком свободном колебании звук струны получается в два раза выше (на октаву выше, как принято говорить в акустике), чем при предыдущем колебании с одной пучностью, т. е. частота равна теперь . Струна как бы разделилась на две более короткие струны, натяжение которых прежнее.

Можно возбудить далее колебание с двумя узлами, делящими струну на три равные части, т. е. колебание с тремя пучностями (рис. 99, в). Для этого нужно оттянуть струну в трех точках, как показано стрелками на рис. 99, в. Частота этого колебания равна . Оттягивая струну в нескольких точках, трудно получить колебания с еще большим числом узлов и пучностей, но такие колебания возможны. Их удается возбудить, например, проводя по струне смычком в том месте, где должна получиться пучность, и слегка придерживая пальцами ближайшие узловые точки. Такие свободные колебания с четырьмя, пятью пучностями и т. д. имеют частоты и т. д.

Итак, у струны имеется целый набор колебаний и соответственно целый набор собственных частот, кратных наиболее низкой частоте . Частота называется основной, колебание с частотой называется основным тоном, а колебания с частотами и т. д.— обертонами (соответственно первым, вторым и т. д.).

В струнных музыкальных инструментах колебания струн возбуждаются либо щипком или рывком пластинкой (гитара, мандолина), либо ударом молоточка (рояль), либо смычком (скрипка, виолончель). Струны совершают при этом не одно какое-нибудь из собственных колебаний, а сразу несколько. Одной из причин того, почему разные инструменты обладают различным тембром, является как раз то, что обертоны, сопровождающие основное колебание струны, выражены у разных инструментов в неодинаковой степени. (Другие причины различия тембра связаны с устройством самого корпуса инструмента — его формой, размерами, жесткостью и т. п.)

Наличие целой совокупности собственных колебаний и соответствующей совокупности собственных частот свойственно всем упругим телам. Однако, в отличие от случая колебания струны, частоты обертонов, вообще говоря, не обязательно в целое число раз выше основной частоты.

На рис. 100 схематически показано, как колеблются при основном колебании и двух ближайших обертонах пластинка, зажатая в тиски, и камертон. Разумеется, на закрепленных местах всегда получаются узлы, а на свободных концах — наибольшие амплитуды. Чем выше обертон, тем больше число дополнительных узлов.

Рис.8.6. Свободные колебания на частоте основного тона и двух первых обертонов: а) пластинки, зажатой в тиски; б) камертона

Говоря ранее об одной собственной частоте упругих колебаний тепа, мы имели в виду его основную частоту и попросту умалчивали о существовании более высоких собственных частот. Впрочем, когда речь шла о колебаниях груза на пружинке или о крутильных колебаниях диска на проволоке, т. е. об упругих колебаниях систем, у которых почти вся масса сосредоточена в одном месте (груз, диск), а деформации и упругие силы — в другом (пружина, проволока), то для такого выделения основной частоты имелись все основания. Дело в том, что в таких случаях частоты обертонов, начиная уже с первого, во много раз выше основной частоты, и поэтому в опытах с основным колебанием обертоны практически не проявляются.

– Конец работы –

Эта тема принадлежит разделу:

Телекоммуникаций и информатики

Федеральное агентство связи.. государственное образовательное учреждение.. высшего профессионального образования поволжский государственный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Колебания воздушного столба

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

А.Г. Глущенко, Е.П.Глущенко
Введение в теорию колебаний. Конспект лекций. – Самара: ГОУВПО ПГУТИ, 2013. – 198 с.     Настоящее издание представляет собой учебное пособие к образовательному

Колебания в биологических объектах
Таким образом, колебания охватывают огромную область физических явлений и технических процессов. Классификация колебаний по характеру взаимодействия с окружающей средой

Гармонические колебания
Гармоническое колебание —это колебание, при котором физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону

Аналитическое
Колебательный процесс описывается в виде периодической функции, например,

Метод фазовых траекторий
Метод описания колебаний путем построения траектории тражения системы в плоскости -

Траектория движения точки в плоскости называется фазовым портретом
Особенно просто выглядит фазовая траектория гармонического колебания, при котором координата и скорость описываются функциями 

Способы представления колебательных движений: Аналитический, табличный, графический, спектральный, векторные диаграммы, фазовый портрет
Гармонические колебания являются простейшей моделью колебательного движения достаточно часто встречающегося в действительности. Любое колебание может быть представлено как сумма гармонических ко

Сложение гармонических колебаний одного направления
Если колеблющееся система или тело участвует в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические

Сложение взаимно перпендикулярных колебаний
Рассмотрим материальную точку, участвующую в двух взаимно перпендикулярных колебаниях по осям X и Y. Она будет двигаться по некоторой криволинейной траектории, форма которой зависит как от соотноше

Спектральное представление колебательных процессов
  Обычной и естественной системой отсчета для нас является время. Мы наблюдаем, как развивается, то или иное событие во времени. Для наблюдения изменения во времени мгновенных значени

Зачем, собственно, нужно считать спектры сигналов?
Во-первых, это позволяет по-новому взглянуть на сигнал, лучше понять его природу, найти характерные частоты сигнала (если их несколько, то по виду самого сигнала это может быть затруднительно). Нап

Анализ сигнала не включающий определения фазовых соотношений между синусоидальными составляющими называется спектральным анализом
У частотной области есть свои плюсы. Частотная область гораздо удобнее в плане измерений. Те, кто занимаются беспроводной связью, заинтересованы в определении внеполосного и паразитного излучения.

Непериодические сигналы
Непериодические сигналы можно представить в виде интеграла синусоидальных сигналов с непрерывным спектром частот. Например, спектральное разложение идеального импульса (единичной мощности и нулевой

Гауссов импульс. Колоколообразный (гауссовский) импульс определяется выражением
Во временной области он изображен на рис. 14 а. Условно длительность такого импульса определяют по уровню е-1/ 2

Спектр широкополосного случайного процесса. Белый шум
Случайный процесс может быть назван широкополосным, если эффективная полоса частот его спектральной плотности мощности сравнима со средней частотой этой полосы, либо эта полоса значительно шире пол

Спектральный анализ
Спектральный анализ — совокупность методов качественного и количественного определения состава среды, основанная на изучении спектров взаимодействия материи с излучением, включая с

Непрерывные спектры дают тела, находящиеся в твердом, жидком состоянии, а также сильно сжатые газы
Полосатые спектры в отличие от линейчатых спектров создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Полосатые спектры имеют твердые тела.

Свободные колебания в системах с одной степенью свободы
Пружинный маятник (http://www.all-fizika.com/virtual/pryjin.php) Опишем движение небольшого бруска массой m, расположенного на гладкой горизонтальной поверхности и прикреп

Колебание жидкости в трубке
Рассмотрим еще один пример колебательной системы. Пусть в вертикальной  U-образной трубке находится вода (рис. 4.8).

Свободные колебания в контуре
Цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром. Пусть конденсатор зарядили до заряда qo и затем подклю

Плазменные колебания
В плазме возможно самопроизвольное смещение зарядов. Такое смещение зарядов вызовет колебательные движения зарядов. Рассмотрим упрощенный подход к решению задачи о нарушениbя квазинейтр

Фазовый портрет колебательной системы
В любой колебательной системе с одной степенью свободы смещение (t) и скорость меня

Положение равновесия в точке 0 на фазовой плоскости является особой точкой и называется особой точкой типа "центр"
Линейный осциллятор с затуханием. Диссипация энергии, обусловленная наличием потерь, оказывает принципиальное влияние на характер движения системы. Наиболее простые закономерно

Нелинейные колебания
С увеличением энергии возрастают амплитуды колебаний смещения и скорости

Затухающие механические колебания крутильного маятника
Свободные колебания реальных механических систем всегда затухают. Затухание возникает в основном из-за трения, сопротивления окружающей среды и возбуждения в ней упругих волн. Рассмотрим с

Период затухающих колебаний
. Если A(t) и А(t + Т) — амплитуды двух последовательных колебаний, соответст­вующих моментам времени,

Добротность
Пниях логарифмического декремента добротность равна (т

Уравнение вынужденных колебаний и его решение. Резонанс
Потери механической энергии в любой колебательной системе из-за  наличия сил трения неизбежны, поэтому без «подкачки» энергии извне колебания будут затухающими. Существует несколько принципиа

Вынужденные электромагнитные колебания
Вынужденныминазываются такие колебания, которые происходят в колебательной системе под влиянием внешнего периодического воздействия.

Установление колебаний
Мы уже отмечали, что если приложить к покоящемуся маятнику гармоническую силу в момент времени t=0, то маятник начнет постепенно раскачиваться, как это качественно изображено на рис. 2.7а. У

Колебательные системы с двумя степенями свободы
  Связанные колебательные системы влияют друг на друга. Колебания таких систем уже не будут независимы, поскольку системы обмениваются энергией. Связь может быть обусловлена:

Колебания систем со многими степенями свободы
Основные идеи, сформулированные при рассмотрении колебаний систем с двумя степенями свободы, теперь могут быть с успехом использованы для анализа колебаний систем с тремя, четырьмя,

Колебания струны
Представим себе, что мы возбудили струну так, что по ней побежала поперечная упругая волна. Дойдя до закрепленного конца струны, волна отразится и побежит обратно. Тогда в любой точке струны встреч

Тоны и обертоны
Струна, оттянутая строго посередине, будет совершать колебания, показанные на рис. 8.3. Через каждые пол периода вся струна оказывается по разные стороны от положения равновесия. При этом на концах

Колебания струны, закрепленной с двух концов
Рис.8.7.   В силу граничных условий, заданных закреплением концов струны, уравнение стоячей волны при выбо

Параметрические колебания. Качели
Всем хорошо знакома и многими любима такая старинная забава как качели. Тренировкам на этом снаряде придает большое значение даже летчики и космонавты. Когда малыша, сидящего на качелях, раскачивае

Http://fizportal.ru/physics-book-47-1
http://jstonline.narod.ru/rsw/course_cont.htm#rsw_b0     Приложение 1. Основные характеристики звука Упругие волны в воздухе, имеющ

Закон Вебера-Фехнера. Диаграмма слуха
Определение громкости звука основано на психофизическом законе, установленном в 1846 году Э.-Г. Вебером, который заложил основы "психометрии", т.е. количественных измерений ощущений. Поск

Некоторые сведения о музыкальных инструментах
Деревянные деки музыкальных инструментов выполняют функции резонаторов, обеспечивая хорошие условия звучания. Частоты струнных инструментов не зависят от резонатора. Основная частота звука

Добротность различных колебательных систем
Интересно сопоставить основные характеристики различных колебательных систем (иногда их для краткости называют осцилляторами), наиболее распространенных в природе и технике. Примерами таких осцилля

Резонаторы
Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты в

Основные формулы механических и электромагнитных колебаний
  Пружинный маятник Колебательный контур Механические величины Электрические величины

Метод комплексных амплитуд
Если в формуле Эйлера (1.53): под понимать фазу гармонических колебаний

Вынужденные колебания с произвольной частотой
Будем искать решение уравнения (2.10) в комплексном виде: (2.26)

Возбуждение стоячих волн в шнуре. Моды колебаний
Пусть кронштейн, к которому привязан левый конец шнура, совершает гармонические колебания где

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги