рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Конечно-разностный метод Эйлера

Конечно-разностный метод Эйлера - раздел Связь, Водных коммуникаций Пусть Дана Простейшая Вариационная Задача: Найти Экстремум Функционала ...

Пусть дана простейшая вариационная задача: найти экстремум функционала

(8)

с заданными граничными условиями:

(9)

где F(x, y, y¢) — непрерывная функция трёх переменных и дифференцируемая функция двух своих последних аргументов.

Решаем задачу методом Эйлера – значения функционала (8) рассматриваются не на произвольных, допустимых в данной вариационной задаче кривых, а лишь на ломаных, составленных из заданного числа N прямолинейных звеньев, с заданными абсциссами вершин

, где .

На этих ломаных функционал (8) превращается в функцию ординат вершин ломаной. Ординаты выбираются так, чтобы функция достигала экстремума, т. е. они определяются из системы уравнений

(ординаты и известны из граничных условий ).

– Конец работы –

Эта тема принадлежит разделу:

Водных коммуникаций

Федеральное бюджетное образовательное учреждение высшего Профессионального Образования.. Санкт-Петербургский государственный университет водных коммуникаций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Конечно-разностный метод Эйлера

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие указания
По дисциплине "Вариационные методы в математической физике" студенты выполняют одну курсовую работу. Для выполнения работы необходимо использовать какие-либо программы символьных

Решение вариационной задачи, функционал которой представляется кратным интегралом
Ход рассуждений для определённого, двойного и тройного интегралов одинаков. Приведём эти рассуждения для двойного интеграла (рис. 1). Рассмотрим функционал

Метод Ритца
Метод Ритца представляет собой один из методов построения минимизирующей последовательности для функционала. Решение уравнения

Основные краевые задачи для уравнений Пуассона и Лапласа
Перечислим основные краевые задачи, связанные с уравнениями Пуассона и Лапласа, и их вариационные формулировки. Первая краевая задача или задача Дирихле для уравнения Пуассона состоит в от

Метод Бубнова–Галеркина
Метод Бубнова–Галеркина можно рассматривать как обобщение метода Ритца для уравнений вида (6), где оператор А не обязательно положительный. Пусть неизвестная функция u(P

О координатных функциях
Применение приближенных методов требует предварительного выбора системы координатных функций. От удачного или не удачного выбора такой системы зависит успех приближенного метода. Выскажем некоторые

For i from i0 to N do
var:=var union {a[i]}: eq[i]:=diff(Fu,a[i])=0: eqns:=eqns union {eq[i]}: od: res:=sol

For k to N-1 do
var:=`union`(var,{Y[k]}): eqns := `union`(eqns, {eq[k]}): end do: nops(var); nops(eqns);

For j from 1 to N do
var:=var union {a[i,j]}: eq[i,j]:=diff(Fu,a[i,j])=0: eqns:=eqns union {eq[i,j]}: od:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги