рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Метод Ритца

Метод Ритца - раздел Связь, Водных коммуникаций Метод Ритца Представляет Собой Один Из Методов Построения Минимизирующей Посл...

Метод Ритца представляет собой один из методов построения минимизирующей последовательности для функционала.

Решение уравнения

, (6)

где А — положительный оператор, сводится к нахождению минимума функционала

, (7)

где скалярное произведение

. (8)

Эту последнюю задачу будем приближенно решать следующим образом. Выберем последовательность

, (9)

координатных функций, принадлежащих области определения оператора DA; подчиним эту последовательность двум условиям:

1. последовательность (9) полна по энергии;

2. при любом n функции линейно независимы.

Построим линейную комбинацию первых n координатных функций

(10)

с произвольными численными коэффициентами aj. Подставим un(P) вместо u(P) в функционал (7); это превратит F(u) в функцию n независимых переменных a1, a2, …, an:

. (11)

Выберем коэффициенты aj так, чтобы функция (11) приняла минимальное значение. Функция (11) достигает минимума при тех значениях независимых переменных, которые обращают в нуль ее первые производные:

. (12)

Уравнения (12) дают, как известно, необходимые условия минимума F(un). Однако, используя положительность оператора A, можно доказать, что коэффициенты aj, удовлетворяющие системе (12), реализуют минимум величины F(un).

Соотношения (12) представляют собой систему линейных алгебраических уравнений

. (13)

Определитель системы (13) есть определитель Грамма линейно независимых функций и потому отличен от нуля. Отсюда следует, что система уравнений Ритца всегда разрешима, если оператор А — положительный.

Найдя коэффициенты a1, a2, …, an и подставив их в (10), получим функцию un(P), которую будем называть приближенным решением уравнения (6) по Ритцу.

– Конец работы –

Эта тема принадлежит разделу:

Водных коммуникаций

Федеральное бюджетное образовательное учреждение высшего Профессионального Образования.. Санкт-Петербургский государственный университет водных коммуникаций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Метод Ритца

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие указания
По дисциплине "Вариационные методы в математической физике" студенты выполняют одну курсовую работу. Для выполнения работы необходимо использовать какие-либо программы символьных

Решение вариационной задачи, функционал которой представляется кратным интегралом
Ход рассуждений для определённого, двойного и тройного интегралов одинаков. Приведём эти рассуждения для двойного интеграла (рис. 1). Рассмотрим функционал

Конечно-разностный метод Эйлера
Пусть дана простейшая вариационная задача: найти экстремум функционала (8) с заданными граничными условиями:

Основные краевые задачи для уравнений Пуассона и Лапласа
Перечислим основные краевые задачи, связанные с уравнениями Пуассона и Лапласа, и их вариационные формулировки. Первая краевая задача или задача Дирихле для уравнения Пуассона состоит в от

Метод Бубнова–Галеркина
Метод Бубнова–Галеркина можно рассматривать как обобщение метода Ритца для уравнений вида (6), где оператор А не обязательно положительный. Пусть неизвестная функция u(P

О координатных функциях
Применение приближенных методов требует предварительного выбора системы координатных функций. От удачного или не удачного выбора такой системы зависит успех приближенного метода. Выскажем некоторые

For i from i0 to N do
var:=var union {a[i]}: eq[i]:=diff(Fu,a[i])=0: eqns:=eqns union {eq[i]}: od: res:=sol

For k to N-1 do
var:=`union`(var,{Y[k]}): eqns := `union`(eqns, {eq[k]}): end do: nops(var); nops(eqns);

For j from 1 to N do
var:=var union {a[i,j]}: eq[i,j]:=diff(Fu,a[i,j])=0: eqns:=eqns union {eq[i,j]}: od:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги