рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Метод Бубнова–Галеркина

Метод Бубнова–Галеркина - раздел Связь, Водных коммуникаций Метод Бубнова–Галеркина Можно Рассматривать Как Обобщение Метода Ритца Для Ур...

Метод Бубнова–Галеркина можно рассматривать как обобщение метода Ритца для уравнений вида (6), где оператор А не обязательно положительный.

Пусть неизвестная функция u(P) удовлетворяет в некоторой области неоднородному уравнению

(28)

и, может быть, некоторым однородным граничным условиям.

Выберем бесконечную последовательность координатных функций φ1, φ2, …, φn, …, которые достаточное число раз (в соответствии с данными задачи) непрерывно дифференцируемы в замкнутой области и которые удовлетворяют всем краевым условиям нашей задачи. Как обычно, через S обозначена граница области .

Будем считать, что как уравнение (28), так и соответствующие ему краевые условия — линейные, тогда функция (10) удовлетворяет всем краевым условиям.

По методу Бубнова–Галеркина коэффициенты aj определяются из требования, чтобы левая часть уравнения (28) стала, после подстановки в нее un(P) вместо u(P), ортогональной к функциям φ1, φ2, …, φn.

Метод Бубнова–Галеркина тем самым приводит к системе линейных алгебраических уравнений, которая по виду тождественна с системой (13) метода Ритца. Отсюда нетрудно заключить, что методы Бубнова–Галеркина и Ритца совпадают, если оператор А положительно определенный. В общем же случае метод Ритца неприменим, тогда как метод Бубнова–Галеркина сохраняет силу.

– Конец работы –

Эта тема принадлежит разделу:

Водных коммуникаций

Федеральное бюджетное образовательное учреждение высшего Профессионального Образования.. Санкт-Петербургский государственный университет водных коммуникаций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Метод Бубнова–Галеркина

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие указания
По дисциплине "Вариационные методы в математической физике" студенты выполняют одну курсовую работу. Для выполнения работы необходимо использовать какие-либо программы символьных

Решение вариационной задачи, функционал которой представляется кратным интегралом
Ход рассуждений для определённого, двойного и тройного интегралов одинаков. Приведём эти рассуждения для двойного интеграла (рис. 1). Рассмотрим функционал

Конечно-разностный метод Эйлера
Пусть дана простейшая вариационная задача: найти экстремум функционала (8) с заданными граничными условиями:

Метод Ритца
Метод Ритца представляет собой один из методов построения минимизирующей последовательности для функционала. Решение уравнения

Основные краевые задачи для уравнений Пуассона и Лапласа
Перечислим основные краевые задачи, связанные с уравнениями Пуассона и Лапласа, и их вариационные формулировки. Первая краевая задача или задача Дирихле для уравнения Пуассона состоит в от

О координатных функциях
Применение приближенных методов требует предварительного выбора системы координатных функций. От удачного или не удачного выбора такой системы зависит успех приближенного метода. Выскажем некоторые

For i from i0 to N do
var:=var union {a[i]}: eq[i]:=diff(Fu,a[i])=0: eqns:=eqns union {eq[i]}: od: res:=sol

For k to N-1 do
var:=`union`(var,{Y[k]}): eqns := `union`(eqns, {eq[k]}): end do: nops(var); nops(eqns);

For j from 1 to N do
var:=var union {a[i,j]}: eq[i,j]:=diff(Fu,a[i,j])=0: eqns:=eqns union {eq[i,j]}: od:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги