рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

For k to N-1 do

For k to N-1 do - раздел Связь, Водных коммуникаций Var:=`union`(Var,{Y[K]}): Eqns := `union`(E...

var:=`union`(var,{Y[k]}):

eqns := `union`(eqns, {eq[k]}):

end do:

nops(var); nops(eqns);

Решаем систему:

> res:=solve(eqns, var);assign(res):

Сформируем список точек вершин ломаной:

> for j from 0 to N do P[j]:=[X[j],Y[j]] end do:

L:=[seq(P[k-1],k = 1 .. N+1)]:

Построим график решения:

> plot(L,x=0..1,title=cat("Число узлов N = ",

convert(N, string)),titlefont=[roman,15],

labelfont[Helvetica,roman,14],

legend=["метод Эйлера"],gridlines=true);

Для сравнения найдем точное решение задачи.

> with(VariationalCalculus):

> f:=(diff(y(x),x))^2+y(x)^2+2*x*y(x);

> ode:=EulerLagrange(f,x,y(x));

> problem := `union`(ode, {y(0) = 0, y(1) = 0});

> dsolve(problem, y(x));

> simplify(convert(%, trig));

> y := unapply(rhs(%), x);

Построим графики приближенного и точного решений:

> plot([L, y(x)],x=0..1,

title=cat("Число узлов N = ",

convert(N, string)),titlefont=[roman,15],

style=[point,line],labelfont[Helvetica,roman,14],

legend=["метод Эйлера","Точное решение"],

gridlines=true);

– Конец работы –

Эта тема принадлежит разделу:

Водных коммуникаций

Федеральное бюджетное образовательное учреждение высшего Профессионального Образования.. Санкт-Петербургский государственный университет водных коммуникаций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: For k to N-1 do

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие указания
По дисциплине "Вариационные методы в математической физике" студенты выполняют одну курсовую работу. Для выполнения работы необходимо использовать какие-либо программы символьных

Решение вариационной задачи, функционал которой представляется кратным интегралом
Ход рассуждений для определённого, двойного и тройного интегралов одинаков. Приведём эти рассуждения для двойного интеграла (рис. 1). Рассмотрим функционал

Конечно-разностный метод Эйлера
Пусть дана простейшая вариационная задача: найти экстремум функционала (8) с заданными граничными условиями:

Метод Ритца
Метод Ритца представляет собой один из методов построения минимизирующей последовательности для функционала. Решение уравнения

Основные краевые задачи для уравнений Пуассона и Лапласа
Перечислим основные краевые задачи, связанные с уравнениями Пуассона и Лапласа, и их вариационные формулировки. Первая краевая задача или задача Дирихле для уравнения Пуассона состоит в от

Метод Бубнова–Галеркина
Метод Бубнова–Галеркина можно рассматривать как обобщение метода Ритца для уравнений вида (6), где оператор А не обязательно положительный. Пусть неизвестная функция u(P

О координатных функциях
Применение приближенных методов требует предварительного выбора системы координатных функций. От удачного или не удачного выбора такой системы зависит успех приближенного метода. Выскажем некоторые

For i from i0 to N do
var:=var union {a[i]}: eq[i]:=diff(Fu,a[i])=0: eqns:=eqns union {eq[i]}: od: res:=sol

For j from 1 to N do
var:=var union {a[i,j]}: eq[i,j]:=diff(Fu,a[i,j])=0: eqns:=eqns union {eq[i,j]}: od:

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги