рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Z - преобразование сигналов

Z - преобразование сигналов - раздел Связь, Введение в теорию сигналов и систем Определение Преобразования. Распространенным Спос...

Определение преобразования. Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform).

Произвольной непрерывной функции s(t), равномерно дискретизированной и отображенной отсчетами sk = s(kDt), равно как и непосредственно дискретной функции, можно поставить в соответствие степенной полином по z, последовательными коэффициентами которого являются значения sk:

sk = s(kDt) Û TZ[s(kDt)] =sk zk = S(z). (8.3.1)

где z = s+jw = r×exp(-jj) - произвольная комплексная переменная. Полином S(z) называют z-образом или z-изображением функции s(kDt). Преобразование имеет смысл для области тех значений z, в которой ряд S(z) сходится, т.е. сумма ряда представляет собой аналитическую функцию переменной z, не имеющую полюсов и особых точек.

Пример:sk = {1, 2, 0, -1, -2, -1, 0, 0}.

S(z) = 1z0+2z1+0z2-1z3-2z4-1z5+0z6+0z7 = 1+2z-z3-2z4-z5.

Впервые z-преобразование введено в употребление П.Лапласом в 1779 и повторно "открыто" В.Гуревичем в 1947 году с изменением символики на z-1. В настоящее время в технической литературе имеют место оба вида символики. На практическое использование преобразования это не влияет, т.к. смена знака только зеркально изменяет нумерацию членов полинома (относительно z0), числовое пространство которых в общем случае от -¥ до +¥. В дальнейшем в качестве основной будем использовать символику положительных степеней z, давая пояснения по особенностям отрицательной символики, если таковая имеется.

По заданному или полученному в результате анализа какой-либо системы z-полиному однозначно восстанавливается соответствующая этому полиному функция путем идентификации коэффициентов степеней при zk с k-отсчетами функции.

Пример:S(z) = 1+3z2+8z3-4z6-2z7 = 1z0+0z1+3z2+8z3+0z4+0z5-0z6-2z7.

sk = {1, 0, 3, 8, 0, 0, -4, -2}.

Смысл величины z в z-полиноме заключается в том, что она является оператором единичной задержки по координатам функции. Умножение z-образа сигнала s(k) на величину zn означает задержку сигнала на n интервалов: znS(z) Û s(k-n).

Z-образы с положительными степенями z соответствуют каузальным (физически реализуемым) процессам и системам, которые работают в реальном масштабе времени с текущими и "прошлыми" значениями сигналов. При обработке информации на ЭВМ каузальность сигналов не относится к числу ограничений и возможно использование отрицательных степеней z, соответствующих отсчетам сигналов "вперед", например, при синтезе симметричных операторов фильтров, что позволяет производить обработку информации без внесения в сигнал фазовых искажений. При использовании символики z-1 "прошлым" значениям соответствуют значения с отрицательными степенями z, "будущим – с положительными.

Основное достоинство z-преобразований заключается в простоте математических операций со степенными полиномами, что имеет немаловажное значение при расчетах цифровых фильтров и спектральном анализе.

Примеры z-преобразования часто встречающихся на практике дискретных сигналов.

Импульсы Кронекера. В общем случае, в произвольной точке числовой оси:

d(k-n) =1 при k=n, d(k-n) = 0 при k ≠ n.

Xd(z) =d(k-n) zk = zn.

Для импульса Кронекера в нулевой точке соответственно Xd(z) = z0 =1.

Функция Хевисайда (единичный скачок).

x(k) = 0 при k < 0, x(k) = 1 при k ³ 0.

X(z) =zk = zk.

Ряд сходится при |z| < 1, при этом его сумма равна:

X(z) = 1/(1-z), |z| < 1.

При использовании символики z-1:

X(z) = 1/(1-z-1) = z/(z-1), |z| > 1.

Экспоненциальная функция:

x(k) = 0 при k < 0, x(k) = ak при k ³ 0.

X(z) =x(k) zk = ak zk = (az)k.

Как и в предыдущем случае, ряд сходится при |az| > 1, т.е. при |z| < |a|, при этом:

X(z) = 1/(1-az), |z| > |a|.

Связь с преобразованиями Фурье и Лапласа. Запишем дискретный сигнал sk в виде суммы весовых импульсов Кронекера:

sk = s(kDt) =s(nDt) d(kDt-nDt).

Определим спектр сигнала по теореме запаздывания:

S(w) =s(kDt) exp(-jwkDt).

Выполним замену переменных, z = exp(-jwDt), и получим:

S(w) =s(kDt)×zk = S(z).

Отсюда следует, что дискретное преобразование Фурье является частным случаем z-преобразования при z = exp(-jwDt). Аналогичной подстановкой z = exp(-p) может осуществляться переход к дискретному преобразованию Лапласа. В общем виде:

S(w) = S(z), z = exp(-jwDt); S(p) = S(z), z = exp(-pDt). (8.3.2)

Обратное преобразование:

S(z) = S(w), w = ln z/jDt; S(z) = S(p), p = ln z/Dt. (8.3.3)

При отрицательной символике z связь между представлениями осуществляется соответственно подстановками z-1 = exp(jwDt) и z-1 = exp(p).

Свойства z-преобразования. Без углубления в теорию, можно констатировать, что все свойства ДПФ действительны и для z-преобразования. Отметим некоторые из них.

Линейность: Если S(k) = a·x(k)+b·y(k), то S(z) = aX(z)+bY(z). Соответственно, z-преобразование допустимо только для анализа линейных систем и сигналов, удовлетворяющих принципу суперпозиции.

Задержка на n тактов: y(k) = x(k-n).

Y(z) =y(k)×zk =x(k-n)×zk =znx(k-n)×zk-n = znx(m)×zm = zn X(z).

Соответственно, умножение z-образа сигнала на множитель zn вызывает сдвиг сигнала на n тактов дискретизации.

Для z-преобразования действительны все известные теоремы о спектрах. В частности, свертка двух сигналов отображается в z-области произведением их z-образов, и наоборот:

s(k) * h(k) Û S(z)H(z), s(k)·h(k) Û S(z) * H(z).

При z = exp(-jwDt) z-преобразование представляет собой особую форму представления дискретных сигналов, при которой на полином S(z) можно ссылаться как на временную функцию (по значениям коэффициентов kDt), так и на функцию частотного спектра сигнала (по значениям аргумента w).

Рис. 8.3.1. Z - плоскость

Отображение z-преобразования выполняют на комплексной z-плоскости с Re z и Im z по осям координат (рис. 8.3.1). Спектральной оси частот w на z-плоскости соответствует окружность радиуса:

|z| = |exp(-jwDt)| == 1.

Подстановка значения какой-либо частоты w в z = exp(-jwDt) отображается точкой на окружности. Частоте w = 0 соответствует точка Re z = 1 и Im z = 0 на правой стороне оси абсцисс. При повышении частоты точка смещается по окружности против часовой стрелки, и занимает крайнее левое положение на частоте Найквиста wN = p/Dt (Re z = -1, Im z = 0). Отрицательные частоты спектра отображаются аналогично по часовой стрелке на нижней полуокружности. Точки wN совпадают, а при дальнейшем повышении или понижении частоты значения начинают повторяться в полном соответствии с периодичностью спектра дискретной функции. Проход по полной окружности соответствует одному периоду спектра, а любая гармоника спектра сигнала задается на плоскости двумя точками, симметричными относительно оси абсцисс.

Z-преобразование позволяет производить разложение сигналов и функций, например передаточных функций фильтров, на короткие составляющие операции свертки, для чего достаточно приравнять z-полином к нулю, найти его корни ai, и переписать полином в виде произведения двучленов:

S(z) = a0(z-a1)(z-a2)...,

где а0- последний отсчет сигнала (коэффициент при старшей степени z).

Но произведению в z-области соответствует свертка в координатной области, и при обратном преобразовании двучлены (z-ai) превращаются в двухточечные диполи {-ai,1}, а сигнал длиной N представляется сверткой (N-1) диполей:

sk= a0{-a1,1}*{-a2,1}*{-a3,1}* ...

Пример. sk = {1.4464, -2.32, 3.37, -3, 1}. S(z) = z4-3z3+3.37z2-2.32z+1.4464. a0 = 1.

Корни полинома S(z): a1 = 0.8+0.8j, a2 = 0.8-0.8j, a3 = 0.7+0.8j, a4 = 0.7-0.8j,

S(z) = (z-0.8-0.8j)(z-0.8+0.8j)(z-0.7-0.8j)(z-0.7+0.8j).

Корни полинома представлены на z-плоскости на рис. 8.3.1. Корни полинома комплексные и четыре двучлена в координатной области также будут комплексными. Но они являются сопряженными, и для получения вещественных функций следует перемножить сопряженные двучлены и получить биквадратные блоки: S(z) = (z2-1.4z+1.13)(z2-1.6z+1.28).

При переходе в координатную область: sk = {1.13, -1.4, 1} * {1.28, -1.6, 1}.

Таким образом, исходный сигнал разложен на свертку двух трехчленных сигналов (функций).

Аналитическая форма z-образов существует для z-преобразований, если возможно свертывание степенного ряда в аналитическое выражение. Выше, в примерах z-преобразования, уже приводилось приведение к аналитической форме z-образов функции Хевисайда и экспоненциальной функции.

Обратное z-преобразование в общем случае производится интегрированием по произвольному замкнутому контуру C, расположенному в области сходимости и окружающему все особые точки (нули и полюсы) z-образа:

sk = (1/2pj)

Способом, удобным для практического применения, является разложение рациональных S(z) на простые дроби. С учетом линейности преобразования:

S(z) =an/(1-bnz) Ûan(bn)k = sk.

Пример.S(z) = 1/(1-5z+6z2) = 3/(1-3z)-3/(1-2z) Û 3×3k -3×2k = s(k).

При разложении функции S(z) по степеням z обратное z-преобразование не вызывает затруднений.

– Конец работы –

Эта тема принадлежит разделу:

Введение в теорию сигналов и систем

Тематика практических работ введение в теорию сигналов.. Содержание.. Общие сведения и понятия..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Z - преобразование сигналов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Тематика практических работ
Работы выполняются на компьютерах по типовым программам с заданием индивидуальных параметров моделирования, расчетов и обработки данных для каждого студента группы.

Пространство сигналов
Важнейшее свойство аналоговых и дискретных сигналов заключается в том, что их линейные комбинации также являются аналоговыми или дискретными сигналами. Линейные комбинации цифровых сигналов, в силу

Мощность и энергия сигналов
Понятия мощности и энергиив теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отража

Пространства функций
Пространства функций можно считать обобщением пространства N-мерных сигналов – векторов на аналоговые сигналы, как бесконечномерные векторы, с некоторыми чисто практическими уточнениями.

Функции корреляции сигналов
Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом. Автокорреляционные функции (АКФ) сигналов

Математическое описание шумов и помех
Шумы и помехи (noise). При детектировании сигналов в сумме с основным информационным сигналом одновременно регистрируются и мешающие сигналы - шумы и помехи самой различ

Разложение сигналов по единичным импульсам
Единичные импульсы. В качестве математической модели единичного импульса при анализе аналоговых сигналов используют дельта-функцию. Дельта-функция

Свертка (конволюция) сигналов
Интеграл Дюамеляпозволяет определять реакцию системы на воздействие s(t) в текущем времени по ее переходной функции g(t) на единичный скачок входного воздействия:

Мощность и энергия сигналов
Частотное представление применяется не только для спектрального анализа сигналов, но и для упрощения вычислений энергии сигналов и их корреляционных характеристик. Как уже рассматривалось

Энергетические спектры сигналов
Скалярное произведение сигналов. Энергия суммы двух произвольных сигналов u(t) и v(t) определяется выражением: E =

Автокорреляционные функции сигналов
Понятие автокорреляционных функций сигналов. Автокорреляционная функция (АКФ, CF - correlation function) сигнала s(t), конечного по энергии, является количественной инте

Взаимные корреляционные функции сигналов
Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположени

Спектральные плотности корреляционных функций
Спектральная плотность АКФ может быть определена из следующих простых соображений. В соответствии с выражением (6.1.1) АКФ представляет собой функцию скалярного

Задачи дискретизации функций
Сигналы и системы дискретного времени. Значения дискретного сигнала определены только при дискретных значениях времени или любой другой независимой переменной. Обычно ег

Равномерная дискретизация
Спектр дискретного сигнала. Допустим, что для обработки задается произвольный аналоговый сигнал s(t), имеющий конечный и достаточно компактный фурье-образ S(f). Равномер

Исследование и разработка основных правил ограничения интервала суммирования при интерполяции данных рядом Котельникова-Шеннона
Рис. 7.2.9. Интерполяция по Котельникову-Шеннону. Ряд (7.2.7) позволяет простым введе

Дискретизация по критерию наибольшего отклонения
Задача абсолютно точного восстановления сигнала на практике обычно не ставится, в отличие от задачи минимального физического объема информации, при котором сохраняется возможность ее восстановления

Адаптивная дискретизация
Частота равномерной дискретизации информации рассчитывается по предельным значениям частотных характеристик сигналов. Адаптивная дискретизация ориентирована на динамические характеристики сигнала,

Исследовать и разработать программу оценки спектра дискретного сигнала при неравномерном шаге дискретизации
Самыми простыми способами восстановления сигналов при адаптивной дискретизации являются линейная и квадратичная интерполяции, которые выполняются по уравнениям: f(x)лин = а

Квантование сигналов
Дискретизация аналоговых сигналов с преобразованием в цифровую форму связана с квантованием сигналов. Сущность квантования состоит в замене несчетного множества возможных значений функции, в общем

Децимация и интерполяция данных
Децимацией (прореживанием, сокращением) цифровых данных принято называть уплотнение данных с удалением избыточной информации. Последнее имеет место, если шаг дискретизации данных был установлен изл

Преобразование Фурье
Дискретное преобразование Фурьеможет быть получено непосредственно из интегрального преобразования дискретизаций аргументов (tk = kDt, fn = nDf):

Преобразование Лапласа
Дискретное преобразование Лапласа (ДПЛ), как и ДПФ, может быть получено из интегрального преобразования дискретизаций аргументов (tk = kDt, wn = nDw): Y(p) =

Дискретная свертка (конволюция)
Свертка – основной процесс в цифровой обработке сигналов. Поэтому важно уметь эффективно ее вычислять. Уравнение дискретной свертки двух функций (сигналов) може

Случайные процессы и функции
Случайный процесс описывается статистическими характеристиками, называемыми моментами. Важнейшими характеристиками случайного процесса являются его стационарность, эргодичность и спектр мощности.

Функции спектральной плотности
Каноническое разложение случайных функций. Введем понятие простейшей случайной функции, которая определяется выражением: X(t) = X×j(t), (9.2.1)

Преобразования случайных функций
Системы преобразования случайных функций.Пусть имеется система преобразования с одним входом, на который поступает (подается) входная случайная функция X(t) - функция

Модели случайных сигналов и помех
Наиболее распространенными моделями случайных сигналов и помех являются телеграфный сигнал, белый шум, гауссовый случайный процесс, гауссовый шум.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги