Z - преобразование сигналов [2,13,21].

Определение преобразования. Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform).

Произвольной непрерывной функции s(t), равномерно дискретизированной и отображенной отсчетами sk = s(kDt), равно как и непосредственно дискретной функции, можно поставить в соответствие степенной полином по z, последовательными коэффициентами которого являются значения sk:

sk = s(kDt) Û TZ[s(kDt)] =sk zk = S(z). (8.3.1)

где z = s+jw = r×exp(-jj) - произвольная комплексная переменная. Полином S(z) называют z-образом или z-изображением функции s(kDt). Преобразование имеет смысл для области тех значений z, в которой ряд S(z) сходится, т.е. сумма ряда представляет собой аналитическую функцию переменной z, не имеющую полюсов и особых точек.

Пример:sk = {1, 2, 0, -1, -2, -1, 0, 0}.

S(z) = 1z0+2z1+0z2-1z3-2z4-1z5+0z6+0z7 = 1+2z-z3-2z4-z5.

Впервые z-преобразование введено в употребление П.Лапласом в 1779 и повторно "открыто" В.Гуревичем в 1947 году с изменением символики на z-1. В настоящее время в технической литературе имеют место оба вида символики. На практическое использование преобразования это не влияет, т.к. смена знака только зеркально изменяет нумерацию членов полинома (относительно z0), числовое пространство которых в общем случае от -¥ до +¥. В дальнейшем в качестве основной будем использовать символику положительных степеней z, давая пояснения по особенностям отрицательной символики, если таковая имеется.

По заданному или полученному в результате анализа какой-либо системы z-полиному однозначно восстанавливается соответствующая этому полиному функция путем идентификации коэффициентов степеней при zk с k-отсчетами функции.

Пример:S(z) = 1+3z2+8z3-4z6-2z7 = 1z0+0z1+3z2+8z3+0z4+0z5-0z6-2z7.

sk = {1, 0, 3, 8, 0, 0, -4, -2}.

Смысл величины z в z-полиноме заключается в том, что она является оператором единичной задержки по координатам функции. Умножение z-образа сигнала s(k) на величину zn означает задержку сигнала на n интервалов: znS(z) Û s(k-n).

Z-образы с положительными степенями z соответствуют каузальным (физически реализуемым) процессам и системам, которые работают в реальном масштабе времени с текущими и "прошлыми" значениями сигналов. При обработке информации на ЭВМ каузальность сигналов не относится к числу ограничений и возможно использование отрицательных степеней z, соответствующих отсчетам сигналов "вперед", например, при синтезе симметричных операторов фильтров, что позволяет производить обработку информации без внесения в сигнал фазовых искажений. При использовании символики z-1 "прошлым" значениям соответствуют значения с отрицательными степенями z, "будущим – с положительными.

Основное достоинство z-преобразований заключается в простоте математических операций со степенными полиномами, что имеет немаловажное значение при расчетах цифровых фильтров и спектральном анализе.

Примеры z-преобразования часто встречающихся на практике дискретных сигналов.

Импульсы Кронекера. В общем случае, в произвольной точке числовой оси:

d(k-n) =1 при k=n, d(k-n) = 0 при k ≠ n.

Xd(z) =d(k-n) zk = zn.

Для импульса Кронекера в нулевой точке соответственно Xd(z) = z0 =1.

Функция Хевисайда (единичный скачок).

x(k) = 0 при k < 0, x(k) = 1 при k ³ 0.

X(z) =zk = zk.

Ряд сходится при |z| < 1, при этом его сумма равна:

X(z) = 1/(1-z), |z| < 1.

При использовании символики z-1:

X(z) = 1/(1-z-1) = z/(z-1), |z| > 1.

Экспоненциальная функция:

x(k) = 0 при k < 0, x(k) = ak при k ³ 0.

X(z) =x(k) zk = ak zk = (az)k.

Как и в предыдущем случае, ряд сходится при |az| > 1, т.е. при |z| < |a|, при этом:

X(z) = 1/(1-az), |z| > |a|.

Связь с преобразованиями Фурье и Лапласа. Запишем дискретный сигнал sk в виде суммы весовых импульсов Кронекера:

sk = s(kDt) =s(nDt) d(kDt-nDt).

Определим спектр сигнала по теореме запаздывания:

S(w) =s(kDt) exp(-jwkDt).

Выполним замену переменных, z = exp(-jwDt), и получим:

S(w) =s(kDt)×zk = S(z).

Отсюда следует, что дискретное преобразование Фурье является частным случаем z-преобразования при z = exp(-jwDt). Аналогичной подстановкой z = exp(-p) может осуществляться переход к дискретному преобразованию Лапласа. В общем виде:

S(w) = S(z), z = exp(-jwDt); S(p) = S(z), z = exp(-pDt). (8.3.2)

Обратное преобразование:

S(z) = S(w), w = ln z/jDt; S(z) = S(p), p = ln z/Dt. (8.3.3)

При отрицательной символике z связь между представлениями осуществляется соответственно подстановками z-1 = exp(jwDt) и z-1 = exp(p).

Свойства z-преобразования. Без углубления в теорию, можно констатировать, что все свойства ДПФ действительны и для z-преобразования. Отметим некоторые из них.

Линейность: Если S(k) = a·x(k)+b·y(k), то S(z) = aX(z)+bY(z). Соответственно, z-преобразование допустимо только для анализа линейных систем и сигналов, удовлетворяющих принципу суперпозиции.

Задержка на n тактов: y(k) = x(k-n).

Y(z) =y(k)×zk =x(k-n)×zk =znx(k-n)×zk-n = znx(m)×zm = zn X(z).

Соответственно, умножение z-образа сигнала на множитель zn вызывает сдвиг сигнала на n тактов дискретизации.

Для z-преобразования действительны все известные теоремы о спектрах. В частности, свертка двух сигналов отображается в z-области произведением их z-образов, и наоборот:

s(k) * h(k) Û S(z)H(z), s(k)·h(k) Û S(z) * H(z).

При z = exp(-jwDt) z-преобразование представляет собой особую форму представления дискретных сигналов, при которой на полином S(z) можно ссылаться как на временную функцию (по значениям коэффициентов kDt), так и на функцию частотного спектра сигнала (по значениям аргумента w).

Рис. 8.3.1. Z - плоскость

Отображение z-преобразования выполняют на комплексной z-плоскости с Re z и Im z по осям координат (рис. 8.3.1). Спектральной оси частот w на z-плоскости соответствует окружность радиуса:

|z| = |exp(-jwDt)| == 1.

Подстановка значения какой-либо частоты w в z = exp(-jwDt) отображается точкой на окружности. Частоте w = 0 соответствует точка Re z = 1 и Im z = 0 на правой стороне оси абсцисс. При повышении частоты точка смещается по окружности против часовой стрелки, и занимает крайнее левое положение на частоте Найквиста wN = p/Dt (Re z = -1, Im z = 0). Отрицательные частоты спектра отображаются аналогично по часовой стрелке на нижней полуокружности. Точки wN совпадают, а при дальнейшем повышении или понижении частоты значения начинают повторяться в полном соответствии с периодичностью спектра дискретной функции. Проход по полной окружности соответствует одному периоду спектра, а любая гармоника спектра сигнала задается на плоскости двумя точками, симметричными относительно оси абсцисс.

Z-преобразование позволяет производить разложение сигналов и функций, например передаточных функций фильтров, на короткие составляющие операции свертки, для чего достаточно приравнять z-полином к нулю, найти его корни ai, и переписать полином в виде произведения двучленов:

S(z) = a0(z-a1)(z-a2)...,

где а0- последний отсчет сигнала (коэффициент при старшей степени z).

Но произведению в z-области соответствует свертка в координатной области, и при обратном преобразовании двучлены (z-ai) превращаются в двухточечные диполи {-ai,1}, а сигнал длиной N представляется сверткой (N-1) диполей:

sk= a0{-a1,1}*{-a2,1}*{-a3,1}* ...

Пример. sk = {1.4464, -2.32, 3.37, -3, 1}. S(z) = z4-3z3+3.37z2-2.32z+1.4464. a0 = 1.

Корни полинома S(z): a1 = 0.8+0.8j, a2 = 0.8-0.8j, a3 = 0.7+0.8j, a4 = 0.7-0.8j,

S(z) = (z-0.8-0.8j)(z-0.8+0.8j)(z-0.7-0.8j)(z-0.7+0.8j).

Корни полинома представлены на z-плоскости на рис. 8.3.1. Корни полинома комплексные и четыре двучлена в координатной области также будут комплексными. Но они являются сопряженными, и для получения вещественных функций следует перемножить сопряженные двучлены и получить биквадратные блоки: S(z) = (z2-1.4z+1.13)(z2-1.6z+1.28).

При переходе в координатную область: sk = {1.13, -1.4, 1} * {1.28, -1.6, 1}.

Таким образом, исходный сигнал разложен на свертку двух трехчленных сигналов (функций).

Аналитическая форма z-образов существует для z-преобразований, если возможно свертывание степенного ряда в аналитическое выражение. Выше, в примерах z-преобразования, уже приводилось приведение к аналитической форме z-образов функции Хевисайда и экспоненциальной функции.

Обратное z-преобразование в общем случае производится интегрированием по произвольному замкнутому контуру C, расположенному в области сходимости и окружающему все особые точки (нули и полюсы) z-образа:

sk = (1/2pj)

Способом, удобным для практического применения, является разложение рациональных S(z) на простые дроби. С учетом линейности преобразования:

S(z) =an/(1-bnz) Ûan(bn)k = sk.

Пример.S(z) = 1/(1-5z+6z2) = 3/(1-3z)-3/(1-2z) Û 3×3k -3×2k = s(k).

При разложении функции S(z) по степеням z обратное z-преобразование не вызывает затруднений.