Модели случайных сигналов и помех [2, 28].

Наиболее распространенными моделями случайных сигналов и помех являются телеграфный сигнал, белый шум, гауссовый случайный процесс, гауссовый шум.

Рис. 9.4.1. Телеграфный сигнал.

Телеграфный сигнал - это случайный процесс xk(t), представляющий собой последовательность прямоугольных положительных и отрицательных импульсов со случайными длительностями и детерминированными значениями амплитуд c и -с, причем перемены знака внутри любого интервала (t, t+t) происходят с интенсивностью a в случайные моменты времени, и не зависят от процессов в смежных интервалах времени. Если считать случайной величиной телеграфного сигнала значение n - количество перемен знака внутри интервала t, то распределение вероятностей значений n будет описываться законом Пуассона:

P(n) = (a|t|)2 exp(-a|t|)/n! (9.4.1)

Рис. 9.4.2. Функция корреляции сигнала.

При вычислении корреляционной функции телеграфного сигнала каждое отдельное произведение xk(t)xk(t+t) равно либо с2, либо -с2 в зависимости от совпадения или несовпадения знаков xk(t) и xk(t+t), причем вероятность с2 равна сумме вероятностей Р(0)+Р(2)+Р(4)+..., а вероятность -с2 определяется соответственно суммой вероятностей Р(1)+Р(3)+Р(5)+... .

Следовательно:

Rx(t)= c2(-1)nP(n)= c2 exp(-a|t|)(-1)n(a|t)n/n! = c2 exp(-2a|t|). (9.4.2)

Параметр a полностью определяет ковариационные и спектральные свойства телеграфного сигнала. При a Þ 0 характеристики сигнала приближаются к характеристикам постоянной составляющей, при a Þ ¥ - к характеристикам белого шума.

Интервал ковариации сигнала:

Tk = 2(Rx(t)/c2) dt = 2/a. (9.4.3)

Рис. 9.4.3. Спектр сигнала.

Отсюда следует, что чем больше a, тем меньше время ковариации процесса. При a Þ 0 Tk Þ ¥ и процесс вырождается в детерминированный (стремится к постоянной составляющей). При a Þ ¥ Tk Þ 0 и процесс вырождается в белый шум с некоррелированными отсчетами даже на соседних временных точках.

Двусторонняя спектральная плотность сигнала:

Sx(w)=Rx(t) exp(-jwt) dt= ac2/(a2+w2). (9.4.4)

Односторонняя спектральная плотность:

Gx(w)= 2ac2/(a2+w2). (9.4.5)

Ширина спектра телеграфного сигнала:

Bk =Gx(w) dw/Gx(0) ºSx(w) dw/Sx(0) = ap. (9.4.6)

Отсюда следует, что спектр случайного процесса тем шире, чем меньше интервал ковариации процесса.

Белый шумявляется стационарным случайным процессом q(t), у которого автокорреляционная функция описывается дельта - функцией Дирака и, соответственно, спектральная плотность мощности не зависит от частоты и имеет постоянное значение Wq(f) = s2, равное дисперсии значений q(t). Другими словами, все спектральные составляющие белого шума имеют одинаковую мощность (как белый цвет содержит все цвета видимого спектра). По существу, это идеализированный случайный процесс с бесконечной энергией. Но в случае постоянства спектральной плотности мощности случайного процесса в конечном диапазоне частот введение такой идеализации позволяет разрабатывать достаточно легко реализуемые оптимальные методы фильтрации. Многие помехи в радиотехнике, в технике связи и в других отраслях, в том числе в информатике, рассматривают как белый шум, если эффективная ширина спектра сигналов Bs много меньше эффективной ширины спектра шумов Bq

Bs/Bq << 1,

и спектральная плотность мощности шумов слабо изменяется в интервале спектра сигнала. Понятие "белый шум" определяет только спектральную характеристику случайного процесса, а, следовательно, под это понятие подпадают любые случайные процессы, имеющие равномерный энергетический спектр и различные законы распределения.

Если частотный диапазон спектра, на котором рассматриваются сигналы и помехи, равен 0-В, то спектральная плотность шума задается в виде:

Wq(f)=s2, 0£ f £B; Wq(f)=0, f > B, (9.4.7)

при этом корреляционная функция шума определяется выражением:

Rq(t)= s2 B×sin(2pBt)/2pBt. (9.4.8)

Эффективный интервал корреляции:

Tk = 2|Rq(t)|dt /Rq(0). (9.4.9)

Рис. 9.4.4. Функции корреляции белого шума в частотном интервале 0-В.

Реальный интервал корреляции целесообразно определять по ширине главного максимума функции Rq(t) (значения t при первых пересечениях нулевой линии), в котором сосредоточена основная часть энергии шумов, при этом Tk = 1/В и BTk = 1 > 1/2, т.е. соотношение неопределенности выполняется.

Как следует из всех этих выражений и наглядно видно на рис. 9.4.4, при ограничении частотного диапазона в шумах появляется определенная корреляция между значениями, и, чем меньше частотный диапазон шумов, тем больше их радиус корреляции. По существу, ограничение шумов определенным частотным диапазоном эквивалентно фильтрации белого шума частотным фильтром с соответствующей шириной полосы пропускания, при этом, корреляционная функция импульсного отклика фильтра свертывается с дельта – функцией белого шума.

Модель белого шума q(t) можно формировать как случайную по времени (аргументу) последовательность дельта - импульсов d(ti) со случайными амплитудными значениями ai:

q(t) = Si ai d(t-ti), (9.4.10)

которая удовлетворяет условиям статистической однородности: постоянное среднее число импульсов в единицу времени и статистическая независимость появления каждого импульса от предыдущих. Такой поток импульсов, который называют пуассоновским, является некоррелированным и имеет равномерный спектр плотности мощности:

Wq(w) = c2 = Nsa2,

где N - число импульсов на интервале Т реализации случайного процесса, sa2 -дисперсия амплитуд импульсов.

Спектральное описание белого шума оказывается удобным при учете влияния на него амплитудно-частотных характеристик различных устройств. Если на входе фильтра с импульсным откликом h(t) действует белый шум q(t), то сигнал на выходе фильтра:

g(t) = h(t) ③ q(t) = h(t) ③ Si ai d(t-ti) =Si ai h(t-ti), (9.4.11)

т.е. выходной сигнал будет представлять собой последовательность сигналов импульсной реакции фильтра h(t) с амплитудой ai, при этом автокорреляционная функция и спектр мощности выходного потока также становятся подобными ФАК и спектру мощности импульсной реакции фильтра, и в первом приближении определяются выражениями:

Rg(t)N sa2 Rh(t) = c2 Rh(t), (9.4.12)

Wg(w) N sa2 |H(w)|2 = c2 |H(w)|2. (9.4.13)

Этот результат известен как теорема Кэмпбелла.

Гауссовый шум возникает при суммировании статистически независимых белых шумов и имеет следующую функцию корреляции:

Rx(t) = a exp(-2ps2t2). (9.4.14)

Спектральная плотность шумов:

Sx(f) = (a/s) exp(-f2/2s2), - ¥ < f < ¥. (9.4.15)

Эффективные шумовые ширина спектра и время ковариации:

Bk = s/2 = 1.25s, Tk = 1/s= 0.4/s. (9.4.16)

Соотношение неопределенности превращается в равенство: BkTk = 1/2.

Гауссовые случайные процессыпреобладают в практических задачах. Случайный процесс x(t) называется гауссовым, если для любого набора фиксированных моментов времени tn случайные величины x(tn) подчиняются многомерному нормальному распределению. Плотность вероятностей мгновенных значений x(t) эргодического гауссового процесса определяется выражением:

p(x) = (sx)-1 exp(-(x-mx)2/2s2). (9.4.17)

Среднее значение и его оценка по достаточно большому интервалу Т:

mx =x p(x) dx, mx » (1/T)x(t) dt.

При нулевом среднем (или при центрировании функции x(t) для упрощения расчетов) дисперсия не зависит от переменной t, и равна:

sx2 =x2 p(x) dx.

Оценка дисперсии при больших значениях Т:

sx2 » (1/T)x2(t) dt =Sx(f) df =Gx(f) df. (9.4.18)

Следовательно, плотность вероятностей гауссового процесса полностью характеризуется спектральной плотностью, по которой можно определить значение дисперсии процесса. На вид спектральных плотностей и соответствующих им ковариационных функций никаких ограничений не накладывается.