рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Разложение сигналов по единичным импульсам [1, 11].

Разложение сигналов по единичным импульсам [1, 11]. - раздел Связь, Введение в теорию сигналов и систем Единичные Импульсы. В Качестве Математической Мод...

Единичные импульсы. В качестве математической модели единичного импульса при анализе аналоговых сигналов используют дельта-функцию.

Дельта-функция или функция Дирака. По определению, дельта-функция описывается следующими математическими выражениями (в совокупности):

d(t-t) = 0 при t ¹ t, d(t-t) dt = 1.

Функция d(t-t) не является дифференцируемой, и имеет размерность, обратную размерности ее аргумента, что непосредственно следует из безразмерности результата интегрирования. Значение дельта-функции равно нулю везде за исключением точки t, где она представляет собой бесконечно узкий импульс с бесконечно большой амплитудой, при этом площадь импульса равна 1.

Дельта-функция является полезной математической абстракцией. На практике такие функции не могут быть реализованы с абсолютной точностью, так как невозможно реализовать значение, равное бесконечности, в точке t = t на аналоговой временной шкале, т.е. определенной по времени также с бесконечной точностью. Но во всех случаях, когда площадь импульса равна 1, длительность импульса достаточно мала, а за время его действия на входе какой-либо системы сигнал на ее выходе практически не изменяется (реакция системы на импульс во много раз больше длительности самого импульса), входной сигнал можно считать единичной импульсной функцией со свойствами дельта - функции.

Функция Кронекера. Для дискретных и цифровых систем в качестве единичного импульса используется дискретный интегральный аналог дельта-функции - функция единичного отсчета d(kDt-nDt), которая равна 1 в координатной точке k = n и нулю во всех остальных точках, при этом функция d(kDt-nDt) определена только для целых значений координат k и n.

Математические выражения d(t-t) и d(kDt-nDt) называют также импульсами Дирака и Кронекера. Однако, применяя такую терминологию, не следует забывать, что это не просто единичные импульсы в координатных точках t и nDt, а импульсные функции, определяющие как значения импульсов в определенных координатных точках, так и нулевые значения по всем остальным координатам, в пределе от -¥ до ¥.

Разложение сигнала по единичным импульсам. Импульсы Дирака и Кронекера используются для разложения, соответственно, произвольных аналоговых сигналов s(t) и дискретных сигналов s(kDt) в непрерывную последовательность неперекрывающихся (ортогональных) импульсов:

Рис. 3.1.1.

s(t) =s(t)d(t-t) dt. (3.1.1)

s(kDt) =s(nDt)d(kDt-nDt). (3.1.1')

Для аналоговых сигналов разложение (3.1.1) в физическом представлении эквивалентно сканированию значений сигнала s(t) в моменты времени t = t бесконечно узкой щелью, бегущей вдоль оси t. Для цифровых сигналов эта щель равна одному отсчету. Пример разложения дискретного сигнала приведен на рис. 3.1.1.

Единичные импульсные функции d(t-t), -¥<t< ¥, и d(kDt-nDt), -¥<n<¥, образуют в бесконечномерных пространствах системы координатных базисов {d(t-t)} и {d(kDt-nDt)}, т.к. они не перекрываются и, соответственно, взаимно ортогональны. По этим координатным системам и производится разложение сигналов s(t) и s(kDt). Совокупности проекций сигналов на координатные базисы представляют собой векторные описания сигналов.

Импульсный отклик линейной системы. Если на вход линейной системы в момент времени t = 0 подать единичный импульс (Дирака или Кронекера, в зависимости от типа системы), то на выходе мы получим реакцию системы на единичный входной сигнал. Эта реакция называется функцией импульсного отклика системы или импульсной характеристикой. Она однозначно определяется оператором преобразования h(..):

y(t) = T[d(t-0)] = h(t). (3.1.2)

y(kDt) = T[d(kDt-0)] = h(kDt). (3.1.2')

Импульсный отклик аналоговой системы на входную дельта-функцию также в определенной степени представляет собой математическую абстракцию идеального преобразования. С практической точки зрения под импульсным откликом можно понимать отображение реакции системы на импульсный входной сигнал произвольной формы с единичной площадью, если длительность этого сигнала пренебрежимо мала по сравнению с временной (координатной) разрешающей способностью системы. Для цифровых систем импульсный отклик однозначно определяется реакцией системы на импульс Кронекера. Функцию импульсного отклика называют также весовой функцией системы.

Очевидно, что в линейных и инвариантных к сдвигу системах форма импульсного отклика не зависит от времени прихода входного сигнала и определяет только его положение на временной оси. Так, если входной импульс задержан (относительно 0) на время to, то соответствующий выходной сигнал будет определяться выражением:

y(t) = T[d(t-to)] = h(t-to).

В любой системе, работающей в реальном масштабе времени, сигнала на выходе системы не может быть, если нет сигнала на ее входе. Отсюда следует односторонность импульсного отклика физических систем:

h(t-t) = 0 при t<t.

Для программных систем, работающих с зарегистрированными массивами цифровых данных, импульсный отклик может быть и двусторонним, так как при обработке сигналов в любой текущей точке kDt системе доступны как "прошлые" отсчеты kDt-nDt, так и "будущие" отсчеты kDt+nDt. Это резко расширяет возможности программной обработки сигналов по сравнению с физическими системами.

На рисунке 3.1.2 приведен пример импульсного отклика h(t) элементарной физической системы преобразования электрических сигналов – динамической интегрирующей RC-цепи. Подобные схемы очень часто применяются в полевых геофизических приборах (например, в радиометрах) в качестве интенсиметров - измерителей средней скорости счета импульсных потоков сигналов.

Рис. 3.1.2.

При подаче на вход RC-цепи единичного и очень короткого (Dt << RC) импульса заряда Dq емкость С заряжается до напряжения Vо = Dq/C, и начинает разряжаться через сопротивление R, при этом напряжение на емкости изменяется по закону v(t) = Voexp(-t/RC) = (Dq/C)exp(-t/RC). Отсюда, импульсный отклик RC-цепи на единичный входной сигнал с единичным значением заряда Dq = 1 равен: h(t) = (1/C)exp(-t/RC), где форма отклика определяется функцией экспоненты, а множитель (1/С) является масштабным преобразователем сигнала (заряда в напряжение). По существу, импульсным откликом системы определяется доля входного сигнала, которая действует на выходе системы по истечении времени t после поступления сигнала на вход (запаздывающая реакция системы).

Если функция импульсного отклика системы известна, то, с учетом принципа суперпозиции сигналов в линейной системе, можно выполнить расчет реакции системы в любой произвольный момент времени на любое количество входных сигналов в любые моменты времени их прихода путем суммирования запаздывающих реакций системы на эти входные сигналы. На рис. 3.1.2 приведен пример входного сигнала s(t) для RC-цепи в виде последовательности импульсов и реакция системы y(t) на такой входной сигнал, образованная суммированием реакций системы на каждый импульс.

Допустим, что на вход RC-цепи в моменты времени t1=1 и t2=2 поступили очень короткие (по сравнению со значением RC) импульсы заряда величиной A и В. Математически это можно отобразить сигналом s(t) = q1(t)+q2(t), где q1(t) = A×d(t-t1) и q2 = B×d(t-t2). Выходной сигнал системы при известном импульсном отклике h(t) отобразится формулой:

y(t) = T[q1(t)+q2(t)] = T[Ad(t-t1)]+T[Bd(t-t2)] = A×T[d(t-t1)]+B×T[d(t-t2)] = A×h(t-t1)+B×h(t-t2).

При расчете значений выходного сигнала в произвольный момент времени t после прихода на вход системы сигналов q1 и q2, например, для t = 5, для каждого из сигналов вычисляются значения их запаздывающих реакций: y1 = A×h(5-1) = A×h(4) и y2 = B×h(5-2) = B×h(3), после чего значения запаздывающих реакций суммируются у = у1+у2. Пример этой операции можно видеть на рис. 3.1.3, где для удобства графического представления приняты значения А=1 и В=1. Сущность операции не изменяется при любых значениях А и В, а в общем случае и для любого количества импульсов.

Рис. 3.1.3.

Однако эту же операцию можно рассматривать и с другой позиции. Развернем импульсный отклик h(t) системы на 1800 и поместим его начало h(0) непосредственно в точку, для которой нужно выполнить расчет выходного сигнала, т.е. в точку t=5 для нашего примера. Если теперь отсчет координат для функции h(t) повести назад от точки расчета по аргументу t, т.е. перейти на вычисление h(t), где значение t изменяется от 0 и далее (в пределе до ¥), то нетрудно убедиться (на рисунке это наглядно видно), что функция h(t) пересечет входные импульсы на тех же значениях у1 и у2. Для этих точек пересечения первого и второго импульсов соответственно имеет место t1 = t-t1 и t2 = t-t2, как и при прямом методе расчета запаздывающих реакций при расчете значений h(t-t1) и h(t-t2). После умножения полученных значений h(t1) и h(t2) на значения входного сигнала А и В, получаем полную аналогию: y1 = A×h(t1) = A×h(t-t1) и y2 = B×h(t2) = B×h(t-t2), и соответственно суммарный сигнал у = у1+у2.

Такое, чисто математическое представление расчета более удобно для составления математических алгоритмов вычислений. Условно этот процесс для коротких входных импульсных сигналов может быть представлен в следующем виде. Для любой точки расчета ti выходного сигнала инвертированная по координатному направлению функция импульсного отклика h(t) помещается в эту точку ti и просматривается по своей координате t с одновременным синхронным просмотром входного сигнала s(t) назад от точки расчета (прошлые значения входного сигнала) по координатам ti-t. Значения всех встреченных при просмотре импульсов s(ti-t) перемножаются со значениями h(t) и суммируются. Тем самым, для каждой текущей точки расчета ti в аналоговой системе выполняется операция:

y(ti) =h(t)×s(ti-t) dt. (3.1.3)

Соответственно в цифровых системах для произвольной точки k:

y(kDt) =h(nDt)×s(kDt-nDt). (3.1.3')

Полученная сумма значений и будет представлять собой запаздывающую реакцию системы на все импульсы, поступившие на вход системы до текущей точки расчета выходного сигнала.

Таким образом, для линейных и стационарных систем легко определить их реакцию на любой входной сигнал, если известен импульсный отклик систем на единичный входной сигнал.

– Конец работы –

Эта тема принадлежит разделу:

Введение в теорию сигналов и систем

Тематика практических работ введение в теорию сигналов.. Содержание.. Общие сведения и понятия..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Разложение сигналов по единичным импульсам [1, 11].

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ТЕМАТИКА ПРАКТИЧЕСКИХ РАБОТ
Работы выполняются на компьютерах по типовым программам с заданием индивидуальных параметров моделирования, расчетов и обработки данных для каждого студента группы.

Пространство сигналов [1,3,16,29].
Важнейшее свойство аналоговых и дискретных сигналов заключается в том, что их линейные комбинации также являются аналоговыми или дискретными сигналами. Линейные комбинации цифровых сигналов, в силу

Мощность и энергия сигналов [1, 3, 16].
Понятия мощности и энергиив теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отража

Пространства функций [1,3,11,16,29].
Пространства функций можно считать обобщением пространства N-мерных сигналов – векторов на аналоговые сигналы, как бесконечномерные векторы, с некоторыми чисто практическими уточнениями.

Функции корреляции сигналов [1, 25, 29].
Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом. Автокорреляционные функции (АКФ) сигналов

Математическое описание шумов и помех [1, 30].
Шумы и помехи (noise). При детектировании сигналов в сумме с основным информационным сигналом одновременно регистрируются и мешающие сигналы - шумы и помехи самой различ

Свертка (конволюция) сигналов [1, 11].
Интеграл Дюамеляпозволяет определять реакцию системы на воздействие s(t) в текущем времени по ее переходной функции g(t) на единичный скачок входного воздействия:

Мощность и энергия сигналов [1,3,16].
Частотное представление применяется не только для спектрального анализа сигналов, но и для упрощения вычислений энергии сигналов и их корреляционных характеристик. Как уже рассматривалось

Энергетические спектры сигналов [1].
Скалярное произведение сигналов. Энергия суммы двух произвольных сигналов u(t) и v(t) определяется выражением: E =

Автокорреляционные функции сигналов [1,25].
Понятие автокорреляционных функций сигналов. Автокорреляционная функция (АКФ, CF - correlation function) сигнала s(t), конечного по энергии, является количественной инте

Взаимные корреляционные функции сигналов [1,19].
Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположени

Спектральные плотности корреляционных функций [1,25].
Спектральная плотность АКФ может быть определена из следующих простых соображений. В соответствии с выражением (6.1.1) АКФ представляет собой функцию скалярного

Задачи дискретизации функций [10, 21].
Сигналы и системы дискретного времени. Значения дискретного сигнала определены только при дискретных значениях времени или любой другой независимой переменной. Обычно ег

Равномерная дискретизация [16,21].
Спектр дискретного сигнала. Допустим, что для обработки задается произвольный аналоговый сигнал s(t), имеющий конечный и достаточно компактный фурье-образ S(f). Равномер

Курсовая работа 1 – Исследование и разработка основных правил ограничения интервала суммирования при интерполяции данных рядом Котельникова-Шеннона.
Рис. 7.2.9. Интерполяция по Котельникову-Шеннону. Ряд (7.2.7) позволяет простым введе

Дискретизация по критерию наибольшего отклонения [10].
Задача абсолютно точного восстановления сигнала на практике обычно не ставится, в отличие от задачи минимального физического объема информации, при котором сохраняется возможность ее восстановления

Адаптивная дискретизация [10].
Частота равномерной дискретизации информации рассчитывается по предельным значениям частотных характеристик сигналов. Адаптивная дискретизация ориентирована на динамические характеристики сигнала,

Курсовая работа 2 – Исследовать и разработать программу оценки спектра дискретного сигнала при неравномерном шаге дискретизации.
Самыми простыми способами восстановления сигналов при адаптивной дискретизации являются линейная и квадратичная интерполяции, которые выполняются по уравнениям: f(x)лин = а

Квантование сигналов [5,21].
Дискретизация аналоговых сигналов с преобразованием в цифровую форму связана с квантованием сигналов. Сущность квантования состоит в замене несчетного множества возможных значений функции, в общем

Децимация и интерполяция данных [4,5,17].
Децимацией (прореживанием, сокращением) цифровых данных принято называть уплотнение данных с удалением избыточной информации. Последнее имеет место, если шаг дискретизации данных был установлен изл

Преобразование Фурье [5,17,21].
Дискретное преобразование Фурьеможет быть получено непосредственно из интегрального преобразования дискретизаций аргументов (tk = kDt, fn = nDf):

Преобразование Лапласа.
Дискретное преобразование Лапласа (ДПЛ), как и ДПФ, может быть получено из интегрального преобразования дискретизаций аргументов (tk = kDt, wn = nDw): Y(p) =

Z - преобразование сигналов [2,13,21].
Определение преобразования. Распространенным способом анализа дискретных цифровых последовательностей является z-преобразование (z-transform). Произвольной непр

Дискретная свертка (конволюция) [5,17,21].
Свертка – основной процесс в цифровой обработке сигналов. Поэтому важно уметь эффективно ее вычислять. Уравнение дискретной свертки двух функций (сигналов) може

Случайные процессы и функции [1, 2, 25].
Случайный процесс описывается статистическими характеристиками, называемыми моментами. Важнейшими характеристиками случайного процесса являются его стационарность, эргодичность и спектр мощности.

Функции спектральной плотности [2,25,26].
Каноническое разложение случайных функций. Введем понятие простейшей случайной функции, которая определяется выражением: X(t) = X×j(t), (9.2.1)

Преобразования случайных функций [1, 26, 27].
Системы преобразования случайных функций.Пусть имеется система преобразования с одним входом, на который поступает (подается) входная случайная функция X(t) - функция

Модели случайных сигналов и помех [2, 28].
Наиболее распространенными моделями случайных сигналов и помех являются телеграфный сигнал, белый шум, гауссовый случайный процесс, гауссовый шум.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги