рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Аналитический обзор

Работа сделанна в 2004 году

Аналитический обзор - Дипломная Работа, раздел Высокие технологии, - 2004 год - Влияние продуктов радиолиза на коррозию реакторных материалов Аналитический Обзор. Радиолиз Воды Радиационная Химия Воды И Водных Растворов...

Аналитический обзор. Радиолиз воды Радиационная химия воды и водных растворов как наука возникла в ответ на потребность атомной промышленности знать, что происходит при действии излучения с теплоносителями ядерных реакторов и с водными растворами - реагентами в технологии выделения делящихся материалов из облученного ядерного топлива.

Особенности физико-химических процессов происходящих при поглощении водой энергии реакторного излучения гамма-квантов, бета- и альфа-частиц, нейтронов, еще являются предметом обсуждения среди ученых, работающих в этой области.

В результате действия излучения на воду образуются химически-активные частицы - возбужденные молекулы и ионы, радикалы и ион-радикалы, реакциями которых друг с другом и c другими растворенными веществами определяются макроизменения, происходящие с водой при облучении - выделение радиолитических газов водорода и кислорода, образование перекиси водорода, окислительно-восстановительные процессы с участием растворенных веществ и т. д. Принято суммарный процесс радиолиза жидкой воды разделять по времени на три стадии физическую, физико-химическую и химическую 5 . 1.1.1 Физическая стадия На этой стадии, длящейся 10-16 - 10-15с, происходит взаимодействие падающей частицы или высокоэнергетического кванта с электронными оболочками молекул воды. Последние обладают энергией, достаточной для ионизации еще нескольких молекул воды. При этом расстояние, на котором происходит каждая последующая ионизация, прогрессивно уменьшается, достигая нескольких нанометров при потере вторичным электроном энергии, меньшей потенциала ионизации молекул воды, равного 12,6 эВ. В результате такого процесса происходит образование коротких треков и шпор - локальных мест повышенной ионизации.

Вторичные электроны, не производящие ионизации, имеют достаточно энергии для возбуждения молекул воды. На физической стадии радиолиза образуются возбужденные Н2О и сверхвозбужденные Н2О молекулы воды в частности, ридберговские состояния с энергиями около 8 эВ . Вторичные электроны, энергия которых снизилась до величины пороговой энергии электронного возбуждения молекул воды в жидкой фазе Е 7,4 эВ , называются электронами недовозбуждения.

В жидкой воде возможно также образование коллективных возбуждений - плазмонов с энергией 21, 4 эВ и линейными размерами охваченной ими области порядка 30 нм. Плазмоны локализуются за время около 10-15с с образованием молекулярных ионов воды. Молекулярные ионы воды их иногда называют сухая дырка могут мигрировать по резонансному механизму время миграции превышает 10-15 с. Возможна также миграция возбуждения.

К концу физической стадии, таким образом, в облученной воде имеются молекулярные ионы воды, электроны недовозбуждения, сверхвозбужденные ионы. Система в этот момент является энергетически неравновесной, негомогенной относительно пространственного распределения упомянутых образованных частиц - короткоживущих продуктов радиолиза. 1.1.2 Физико-химическая стадия За время колебания молекул воды около 10-14 c происходит диссоциация возбужденных и автоионизация сверхвозбужденных молекул воды H2O H OH- распад из синглетно возбужденной молекулы воды в состояние А1В1 с Е 8, 4 эВ или Н2О Н2 О распад из синглетно возбужденной молекулы воды в состояние В1А1 с Е 10, 1 эВ , Н2О Н2O е За время порядка 10-13с происходит термализация электронов недовозбуждения.

Они теряют свою энергию в процессах возбуждения внутримолекулярных колебаний основной процесс и дипольной релаксации молекул воды. Скорость потери энергии электронами недовозбуждения составляет величину порядка 4. 1013 эВ с. Электроны, с некоторым избытком энергии могут взаимодействовать с молекулярными ионами воды в триплетном и синглетном возбужденных состояниях в соотношении 3 1. Если происходит рекомбинация скоррелированной ионной пары материнский ион - электрон, то образуются возбужденные молекулы воды только в синглетном состоянии.

Сухие электроны могут также реагировать с акцепторами в концентрированных растворах.

Термализованные электроны за время продольной диэлектрической релаксации 3.10-13 с локализуются с образованием гидратированных элект-ронов.

Положительные молекулярные ионы воды вступают в ион-молекулярную реакцию Н2О Н2О Н3О ОН. Образовавшийся ион гидроксония Н3О гидратируется за время порядка 10-13 с. К концу физико-химической стадии время порядка 10-11 с облученная вода находится в состоянии теплового равновесия. В ней существуют гидратированные электроны, радикалы Н, ОН и О, ионы гидроксония и молекулярный водород.

Эти частицы распределены в пространстве негомогенно - они концентрируются в микрообластях. В случае -облучения это - шпоры. Распределение частиц в шпоре также неравномерное атомы О и Н, радикалы ОН и ионы гидроксония располагаются преимущественно в центре шпоры, а ги2 дратированные электроны - в шаровом слое на расстоянии около 4 нм от центра. 1.1.3 Химическая стадия На химической стадии, начиная со времени порядка 10-10 с, протекают в шпорах и коротких треках химические реакции образовавшихся на предыдущей стадии продуктов друг с другом, что приводит к образованию атомов и молекул водорода, перекиси водорода и ионов гидроксила.

Одновременно имеет место диффузия этих частиц и ранее образовавшихся из шпор в объем раствора, следствием чего является размывание шпор и выравнивание концентраций продуктов радиолиза по объему, т. е установление гомогенного распределения продуктов.

Время установления такого распределения составляет порядка 10-7 с. По прошествии этого времени в воде существуют гидратированные электроны, атомы водорода и кислорода, радикалы ОН, молекулярный водород, перекись водорода, ионы гидроксония и гидроксила. Радиационно-химические выходы этих частиц, образование которых закончилось ко времени завершения внутришпоровых реакций их называют первичными выходами, составляют в нейтральной воде для гамма-излучения, частица 100 эВ G егидр 2, 8 - 2, 9 G H 0, 6 G ОH 2, 8 - 2, 9 G O 0, 0067 G H2 0, 45 G H2O2 0, 75 G H3O 3, 3 - 3,4 G OH- 0, 5 -0, 6. Значения радиационно-химических выходов зависят от вида воздействующего на воду ионизирующего излучения, точнее, от ЛПЭ излучения и температуры.

Эти зависимости, а также кинетику радиолиза воды мы будем рассматривать в разделе, посвященном математическому моделированию поведения воды как теплоносителя в первом контуре водо-водяных ядерных реакторов. Вышедшие из мест повышенной концентрации в объем облучаемой системы частицы реагируют с растворенными веществами, со стабильными продуктами радиолиза и с короткоживущими частицами, вышедшими из других мест повышенной концентрации.

Эти реакции характеризуются, как правило, весьма высокими константами скорости и низкими иногда нулевыми энергиями активации. Скорость многих реакций радикалов и ион-радикалов лимитируется диффузией. В результате упомянутых реакций в системе происходит разрушение первичных стабильных продуктов радиолиза воды - водорода, перекиси водорода, кислорода - и возникновение вторичных радикальных продуктов, например, радикалов HO2 . Если разрушается один из продуктов радиолиза, например, Н ОН- Н2О , или Н2 ОН Н Н2О, Н2О2 егидр ОН- ОН , то говорят об обратных реакциях.

В условиях непрерывного воздействия ионизирующего излучения такие реакции играют важную роль, так как благодаря им система не претерпевает полного разложения под действием излучения. В ней устанавливается стационарное состояние - динамическое равновесие, при котором скорость разрушения вещества, составляющего систему воды под действием излучения оказывается равной скорости воспроизводства этого вещества из возникших при действии излучения фрагментов или продуктов.

Явление радиационно-химического стационарного состояния в облученной воде имеет исключительно важное значение для количественных расчетов изменений под действием излучения свойств воды как теплоносителя в первом контуре реакторных установок, в бассейнах - хранилищах и контейнерах для перевозки отработавшего топлива.

Если при радиолизе водная система находится в стационарном состоянии, то это означает наличие динамического равновесия по всем ее составляющим основному веществу - воде и продуктам радиолиза - водороду, кислороду и перекиси водорода. При этом скорость образования продуктов в первичных процессах равна скорости их разложения во вторичных реакциях и удаления из воды в паровую фазу. Кинетика накопления короткоживущих Хi, j - гидратированные электроны, атомы водорода, радикалы гидроксила и т. д. и стабильных Х2 - водород, кислород и перекись водорода продуктов радиолиза воды описывается уравнениями d Хi, j dt G Хi, j I 100NА - 2 i, j ki, j Хi Хj ki, j Хi Х, j d Х2 dt G Х2 I 100NА - 2 i ki Хi Хj 2 i, jki, j Хi Хj - kХ2 Х2 - рХ2 . ai 1.1 В этих уравнениях Х2 - концентрация молекулярных продуктов в воде, рХ2- их парциальное давление в паровой фазе, G Х2 - начальный выход, Хi , Хj - концентрации короткоживущих продуктов радиолиза, участвующих в образовании и разложении молекулярных продуктов Х2 , ki, j , ki - константы скорости элементарных реакций, kХ2 - коэффициент массопереноса молекулярных продуктов из жидкой фазы в газовую, аi - константа Генри, I - мощность поглощенной дозы, и NА - число Авогадро 5 . В стационарном состоянии d Xi, j dt d X2 dt 0, 1.2 Это означает, что после достижения стационарного состояния концентрации продуктов радиолиза перестают зависеть от времени дозы и остаются на постоянном уровне сколько бы времени не продолжалось облучение 15 . Для ядерной технологии очень важно такое присущее химическим процессам в облучаемой воде явление, как стационарное состояние.

Во-первых, тем, что в замкнутой системе разложение воды в результате радиолиза не может идти до бесконечности.

Во-вторых, величины стационарных концентраций могут быть в некоторых пределах изменены путем варьирования условий облучения.

И в-третьих, стационарные концентрации заданных условий радиолиза могут быть рассчитаны современными методами математического моделирования.

На величины стационарных концентраций продуктов радиолиза воды оказывают влияние следующие технологически важные параметры линейная передача энергии, связанная с качественным составом излучения, в поле которого находится водная система температура, при которой происходит облучение, а также наличие в воде примесей, особенно, кислорода. 1.1.4 Влияние продуктов радиолиза на коррозию реакторных материалов Наличие примесей в воде оказывает весьма существенное влияние на величины стационарных концентраций продуктов радиолиза воды. Более того присутствие некоторых примесей в значительных концентрациях может приводить к тому, что стационарное состояние окажется недостижимым. Примером этому служат содержащие нитрат натрия высокоактивные водные отходы переработки отработавшего ядерного топлива в таких системах отсутствует стационарное состояние в отношении радиолитических газов - водорода и кислорода.

Что касается влияния температуры на стационарные концентрации стабильных продуктов радиолиза, то этот фактор действует по двум каналам.

Во-первых, через константы скорости элементарных реакций. Большинство из этих констант диффузионно-контролируемые. Поэтому, на первый взгляд, вычислить зависимость констант от температуры достаточно просто следует принять, что в достаточно широком диапазоне температур зависимость констант ki и ki, j от температуры - аррениусова, и положить, что энергия активации равна энергии активации самодиффузии воды, т.е. 10 -15 кДж моль. Однако такой подход на современном уровне знаний о природе воды может оказаться несостоятельным. Доказано, что вода даже при высоких температурах выше 2500С структурирована.

По этой причине ее свойства, в том числе коэффициент самодиффузии, сложно зависят от температуры, особенно, если в воде присутствуют вещества, способные влиять на структуру, например, электролиты или растворенные газы. Даже в специально очищенной воде энергия активации самодиффузии различна в разных температурных диапазонах при 2500 С она равна 12 кДж моль, при 250С - 18, 9 кДж моль, а в переохлажденной до -300 С воде - 46 кДж моль. Такие эффекты, без сомнения, необходимо учитывать при прогнозировании последствий действия излучения на воду при высокой температуре.

Второй канал влияния температуры на стационарные концентрации стабильных продуктов радиолиза воды - температурные зависимости начальных выходов всех продуктов радиолиза воды. Эти зависимости для выходов гамма-радиолиза воды представлены в табл. 1.1. Таблица 1.1 - Выходы продуктов радиолиза воды в зависимости от температуры 6 T, K G eгидр G H G OH G H2O2 G H2 G OH- G H 298 3, 00 0, 65 2, 95 0, 80 0, 45 0, 60 3, 60 323 3, 07 0, 65 3, 06 0, 78 0, 45 0, 66 3, 73 373 3, 17 0, 76 3, 37 0, 73 0, 45 0, 93 4, 10 423 3, 49 0, 78 3, 77 0, 70 0, 45 1, 11 4, 60 473 3, 91 0, 88 4, 37 0, 66 0, 45 1, 43 5, 34 523 4, 41 1, 04 5, 13 0, 61 0, 45 1, 85 6, 26 Действие ионизирующих излучений может заметно изменить состав воды и растворов, используемых как теплоносители, образуя главным образом Н2 или D2, O2 или H2O2. Относительно небольшие количества кислорода или перекиси, образующихся при радиолизе, могут оказывать неблагоприятное воздействие на коррозию конструкционных материалов.

Возможно, что радиационная обстановка влияет на химическую природу радиоактивных веществ, растворенных в воде, и на их перенос в реакторной системе.

Процесс коррозии циркония и его сплавов чрезвычайно сложен из-за зависимости кинетики и характера окисления от многих параметров и факторов.

Среди них основными являются - химический состав сплава по примесям и легирующим элементам - структурное состояние сплава - состояние поверхности изделия - химия теплоносителя чистота воды по примесям, содержание кислорода и водорода, рН при высокой температуре эксплуатации и др тепловой поток через оболочку и температура теплоносителя - облучение вид радиации, интенсивность энерговыделения, нейтронный поток, флюенс быстрых нейтронов 1 . Чистый цирконий весьма коррозионностойкий материал.

Присутствие примесей, а также необходимость легирования для повышения прочности приводят к снижению его коррозионной стойкости. Изучение коррозионной стойкости, разработка коррозионностойких сплавов занимают доминирующее положение в исследовательских работах. Практическое использование циркония и его сплавов показало, что, обладая большой активностью по отношению к различным газам, при использовании в воде и паре цирконий поглощает освобождающийся при коррозии и находящийся в свободном виде водород.

Вопрос о влиянии водорода на коррозию Zr в воде при высоких температурах является особенно интересным, поскольку известно, что в процессе коррозии в подповерхностном слое Zr под пленкой окиси возможно образование некоторого количества гидридов циркония ZrH-ZrH2-ZrH4, снижающих пластичность металла. В то же время в литературе имеются сведения, утверждающие, что весьма большие количества молекулярного водорода, растворенного в воде, на коррозию Zr не влияют. Считается, что образование гидридов является следствием взаимодействия Zr с активным атомарным водородом образующимся при коррозии, образующимся в процессе водородной деполяризации, а молекулярный водород в реакцию с Zr не вступает.

Поглощение водорода и образование гидридов приводят зачастую к охрупчиванию металла и к изменению его коррозионной стойкости и механических свойств при работе конструкций в реакторе 15 . Коррозия Zr-1 Nb сплавов имеет комплексный механизм и зависит от многих параметров.

На начальной стадии окисления формируется плотно прилегающая к металлу оксидная пленка черного цвета толщиной обычно не более 3 мкм. Пленка представляет собой твердый раствор ZrO2 и является нестехиометрическим ZrO2-х оксидом с дефицитом кислорода. Кинетика окисления на этой стадии подчиняется параболическому закону. С ростом содержания кислорода в пленке нестехиометрический оксид превращается в белый оксид ZrO2, который не обладает защитными свойствами.

Белая пористая пленка оксида растет на черной пленке и вместо нее. На кинетической кривой коррозии участок, соответствующий данному процессу, называют переходным 1, 7, 15 . После переходного участка рост окисла происходит по линейному закону, и скорость коррозии становится практически постоянной. В условиях РБМК и ВВЭР переходная стадия окисления сплава Zr l Nb обычно наблюдается в течении 1 - 5 103 и 3 - 10 103 часов, соответственно.

Существующие физико-химические модели коррозии Zr обычно основаны на твердофазном механизме окисления, т.е. рассматривают только первую стадию коррозии, влияние ВХР на коррозию в этом случае учитывается. В условиях реальной эксплуатации важно иметь модель, описывающую вторую стадию окисления, которая и оказывает влияние на надежность ТВС. По нашему мнению, на этой стадии скорость коррозии определяется прежде всего растворимостью оксида и может быть описана, моделью, учитывающей диффузию воды в порах оксида при постоянной толщине реакционной зоны. Согласно 7 следует выделять термический и радиационный вклад в коррозию циркония.

В этом случае скорость линейного окисления может быть выражена как Vox kT kF, 1.3 где kT и kF - термический и нейтронно-радиационный вклады в скорость окисления. При постоянном давлении кислорода в среде температур зависимость скорости окисления в общем случае может быть описана уравнением Аррениуса kT ko exp -Q RT , 1.4 где Q - энергия активации, R - газовая постоянная, Т - абсолютная температура поверхности Ме окислитель.

Экспериментально установлено, что величина Q R ? 5 103 К 7 . В процессе радиолиза воды и водных растворов теплоносителя образуется множество реакционноспособных продуктов радиолиза. Некоторые из них существуют в растворе доли секунд, а некоторые являются более устойчивыми молекулярные продукты. Эти устойчивые продукты взаимодействуют с материалами контура, вызывая их коррозию.

Продукты коррозии, откладывающиеся на стенках контура могут изменять выходы продуктов радиолиза. С другой стороны такие радиолитически образованные вещества как молекулярный водород и пероксид водорода способствуют образованию коррозионных отложений на стенках контура. 1.2 Разложение перекиси водорода В настоящее время перекись водорода считается весьма стойким соединением, так как методы ее производства обеспечивают высокую чистоту и концентрацию. Также стойкость H2O2 обеспечивается введением стабилизаторов.

Перекись водорода, используемая для экспериментов в данной работе также стабилизирована при ее изготовлении, так как это коммерческий продукт. Разложение перекиси водорода становится ощутимым лишь тогда, когда создаются для этого специальные условия или когда она приходит в соприкосновение с веществами, каталитически во много раз ускоряющими ее разложение. 1.2.1 Термическое разложение Термическое разложение перекиси водорода во многих отношениях аналогично фотохимическому, хоть и отличается от него не только более высоким значением скорости. Разложение 30 -ного раствора пергидроля в присутствии очищенной стеклянной ваты протекает со значительно большей скоростью, чем в отсутствие ее, присутствие любых инертных порошков вызывает разложение перекиси, причем скорость этого разложения оказывается пропорциональной поверхности добавленного порошка и не зависит от концентрации самой перекиси 8 . При разложении перекиси так называемая константа скорости реакции при неизменных условиях опыта в действительности не является постоянной. Авторы 8 пришли к выводу, что существенным фактором является состояние реакционного сосуда.

Таким образом термическое разложение перекиси является типичной реакцией на стенках. Установлено 9 далее, что термическое разложение перекиси водорода, содержащей пыль, но не содержащей примесей щелочи, при 80 протекает очень медленно и для всех концентраций является линейной функцией от времени.

Хлориды и вещества щелочного характера сильно ускоряют реакцию, при этом зависимость скорости реакции от времени никогда не бывает линейной и часто может быть выражена уравнением скорости мономолекулярной реакции.

Авторы 8,9 , на основании этих результатов, приходят к выводу, что чистая перекись водорода, совершенно лишенная пыли, при соприкосновении с каталитически неактивными стенками сосуда разлагается, вероятно, с чрезвычайно малой скоростью. Термическое разложение перекиси рассматривается ими как гетерогенная реакция, причем она может протекать даже на поверхности пылинок. В сосудах из кварца или стекла термическое разложение. происходит сначала по реакции нулевого порядка.

Для стеклянной поверхности это правило справедливо для всех концентраций, для кварцевой - лишь до определенного предела. Разложение перекиси обусловлено при этом адсорбцией молекул H2O2 стенками сосуда и поверхностью присутствующих пылинок. Как при фотолизе, так и при термическом разложении присутствующие в растворе пылинки можно рассматривать как катализаторы разложения.

Термическое разложение перекиси водорода сильно ускоряется органическими коллоидными веществами. Чистота воды также имеет большое значение. Некоторые кислоты обладают способностью к стабилизации перекиси водорода, а щелочи наоборот ускоряют ее разложение. По данным 8 роль кислотных стабилизаторов сводится в основном к удалению гидроксильных ионов последние оказываются, однако, эффективными промоторами разложения перекиси лишь в присутствии твердой поверхности катализ разложения перекиси щелочами несомненно представляет собой гетерогенное явление. 1.2.2 Разложение паров перекиси водорода По данным 7 , пары Н2О2 при температурах от 100 до 500 мало разлагаются медной и железной проволоками, кусками стекла, стеклянной ватой, кусками пористой керамики.

Полное разложение вызывают асбест, платинированный и паладированный асбест, пемза и алюминиевая стружка. При 85 разложение на кварце протекает, как реакция нулевого порядка, причем молекулы кислорода замедляют реакцию.

На платиновой проволоке пары Н2О2 разлагаются мономолекулярно и скорость реакции зависит, по-видимому, от скорости диффузии через пленку адсорбированного кислорода. 1.2.3 Влияние твердых поверхностей на разложение перекиси водорода Влияние твердых поверхностей на химические реакции общеизвестны в сильной степени оно проявляется и при реакции разложения перекиси водорода. Особенно чувствительным становится ускоряющее действие поверхности на разложение перекиси водорода тогда, когда стенки сосудов, в которых она хранится, имеют шероховатую поверхность.

Для уменьшения влияния стекла на H2O2 бутыли, в которых она хранится, часто парафинируют, благодаря чему предотвращается также возможность растворения содержащихся в стекле щелочных соединений. Уголь также действует разлагающе на перекись водорода. При этом каталитическая активность его зависит от пористости и величины его поверхности. Скорость разложения перекиси водорода на поверхности обыкновенного и активированного сахарного угля, окиси железа, гидроокиси магния, каолина, трехокиси вольфрама, стекла, треххлористого хрома, окиси цинка, окиси серебра и силикагеля может быть изменена в ту или другую сторону путем добавки небольших количеств кислоты или щелочи.

Согласно 7 , катализ H2O2 платиной - процесс электрохимический, причем платина является переносчиком электронов от окисляющейся молекулы Н2О2 к восстанавливающейся. на неактивных участках платины Н2О2 отдает свои электроны, окисляясь по уравнению H2O2 - 2е- 2Н О2. В платине образуется избыток электронов, которые скапливаются на активных центрах гранях и остриях и способствуют восстановлению Н2О2 Н2О2 2е 20Н . Ионы Н и ОН образуют воду. Авторами 9 при изучении процесса разложения паров перекиси в присутствии азота или кислорода, был использован метод измерения спектров поглощения паров перекиси и установил, что примерно около 520 протекает реакция первого порядка с энергией активации около 40 ккал моль. В сосудах, покрытых изнутри борной кислотой, реакция идет частично как гомогенная, особенно при 470-540 С. Степень разложения перекиси водорода зависит от свойств материала на котором она разлагается и от вида поверхности различие металлов и оксидов металлов и металлов между собой. Выяснение механизма разложения перекиси водорода на твердых поверхностях на поверхности контура и оболочек твэлов очень важная задача, так как перекись водорода является одним из основных коррозионных агентов. 1.3 Математическое моделирование радиолиза теплоносителя При эксплуатации ядерных энергетических установок возникают проблемы, решение которых оказывается возможным только после количественного определения изменений в составе теплоносителя, происходящих в результате воздействия на него ионизирующих излучений.

Экспериментальное определение таких изменений в условиях работы реального реактора исключительно сложно и трудоемко, что влечет за собой недостаточную достоверность получаемых результатов из-за малого числа повторяющихся экспериментов.

В некоторых случаях провести в полном объеме эксперименты вообще нельзя, так как в ходе их могут оказаться нарушенными условия безопасной эксплуатации реактора. Лабораторное прямое моделирование эксперименты на образцах также далеко не всегда выполнимо, поскольку в лаборатории практически невозможно подвергнуть образцы теплоносителя одновременному воздействию тех факторов, которые на них действуют в реакторных системах - смешанное нейтроны, гамма-кванты, заряженные частицы излучение, высокие температура и давление, наличие интенсивного массопереноса.

В связи со сказанным весьма важное значение приобретают развиваемые в настоящее время математические модели физических и физико-химических процессов, протекающих в реакторных системах, и методы прогнозирования с использованием этих моделей и высокопроизводительной вычислительной техники.

Математическое моделирование радиолиза водного теплоносителя реакторных контуров сегодня является достаточно широко применяемым средством оценки водно-химических условий в контуре и предсказания коррозионного поведения контурных материалов.

Разработка моделей велась многими исследователями 5 в направлении все более полного учета факторов, влияющих на радиолиз воды в реальных условиях контуров ЯЭУ. 1.3.1 Математическая модель Математическая модель обычно состоит из нескольких блоков.

Центральным блоком модели является адекватное описание физического смысла явления в нашем случае радиолиза теплоносителя в виде набора уравнений химических реакций, баланса, кинетики, переноса и т.д. Параметрами этих уравнений служат как фундаментальные постоянные, характерные для самого явления например, энергии активации и константы скорости химических реакций, термодинамические константы теплоносителя и т. д так и условия, в которых явление протекает температура, гидродинамические условия, свойства излучений и потоков частиц. Набор этих параметров составляет второй блок модели.

Третий блок - математический аппарат и программные продукты, позволяющие рассчитывать динамику процесса в системе и предсказывать его реакцию на заданное изменение условий. При построении модели главным является доказательство ее адекватности, т. е. способности описывать с заданной точностью при принятых допущениях весь имеющийся к моменту построения модели экспериментальный материал, относящийся к рассматриваемому явлению и полученный как в реакторных, так и в лабораторных экспериментах.

Такое доказательство проводится методами математической статистики путем сравнения расчетных величин с экспериментальными.

В процессе доказательства проводится уточнение модели. В качестве примера можно привести разработанную в лаборатории ВНИПИЭТ математическую модель радиолиза водного теплоносителя в условиях реального контура, включающую в себя данные по гетерогенному катализу разложения перекиси водорода на медных сплавах 3, 10 . Математическое моделирование радиолиза водного теплоносителя реакторных контуров сегодня является достаточно широко применяемым средством оценки водно-химических условий в контуре и предсказания коррозионного поведения контурных материалов.

Разработка моделей велась многими исследователями 1, 4, 5, 6, 10 в направлении все более полного учета факторов, влияющих на радиолиз воды в реальных условиях контуров ЯЭУ. Одним из таких факторов является наличие химических примесей в реакторной воде, которые либо вводятся в нее специально для корректировки водно-химического режима, либо являются продуктом коррозии материалов контура.

К последним относятся, прежде всего, ионы металлов, являющихся конструкционными материалами контура нержавеющая сталь, медные сплавы и пр Участвуя в цепи химических превращений, эти ионы могут существенно повлиять на выход конечных продуктов радиолиза Н2, О2, Н2О2 и, тем самым, на коррозионные свойства теплоносителя. Это, в частности, относится к ионам Cu2 , которые, по некоторым данным, усиливают радиолитическое разложение воды. С другой стороны, ионы Cu2 могут выступать в качестве катализатора рекомбинации Н2 и О2 согласно механизму 1 Cu2 Н2CuH H CuH Cu2 2Cu H Cu O2Cu2 O2- что, наоборот, должно тормозить радиолиз воды. Далее, как ионы Cu2 , так и ионы Fe3 являются катализаторами разложения одного из продуктов радиолиза Н2О2, что может существенно изменить ее радиолитический выход.

Наконец, известно каталитическое действие на разложение Н2О2 поверхностей металлов в частности меди и нержавеющей стали 3, 4 , поэтому рассмотрение радиолиза воды в реальных контурах должно учитывать и этот фактор.

Попытка комплексного учета перечисленных факторов привела к созданию математической модели радиолиза водного теплоносителя в условиях реального контура. 1.3.2 Реакции, включенные в математическую модель В основу модели положен механизм радиолиза чистой воды и разбавленных растворов Н2, О2, Н2О2, предложенный в 10 . Он представлен реакциями 1-54 в таблице 1.2, где даны также значения констант скорости t 25oC и энергии активации реакций.

Добавленная нами реакция 55 описывает термический распад перекиси водорода. Таблица 1.2 - Совокупность реакций, включенных в модель радиолиза Реакции Константа скорости, л моль с Энергия активации, кДж моль 1 2eaq- H2 2OH- 4,97 109 20,5 2 eaq- H H2 OH- 1,89 1010 12,6 3 eaq- OH OH- 3,00 1010 12,6 4 eaq- O- 2OH- 2,20 1010 12,6 5 eaq- HO2 HO2- 2,00 1010 12,6 6 eaq- O2- HO2- OH- 1,30 1010 18,8 7 eaq- H2O2 OH OH- 1,20 1010 15,1 8 eaq- HO2- OH- O- 3,50 109 12,6 9 eaq- O2 O2- 1,80 1010 13 10 eaq- H H 2,30 1010 12,2 11 eaq- H2O H OH- 19 18,8 12 2H H2 7,80 109 12,6 13 H OH H2O 2,50 1010 12,6 14 H HO2 H2O2 2,00 1010 12,6 15 H O2- HO2- 2,00 1010 12,6 16 H H2O2 H2O OH 8,42 106 13,6 17 H O2 HO2 2,10 1010 12,6 18 OH- H eaq- H2O 2,20 107 26 19 2OH H2O2 5,50 109 8 20 OH O- HO2- 2,00 1010 12,6 21 OH HO2 H2O O2 6,30 109 12,6 22 OH O2- OH- O2 8,20 109 12,6 23 H2O2 OH HO2 H2O 4,06 107 14 24 OH HO2- HO2 OH- 7,50 109 12,6 25 H2 OH H H2O 3,81 107 19 26 OH- OH O- H2O 1,20 1010 12,6 27 2O- H2O HO2- OH- 1,00 109 12,6 28 O2- O- H2O O2 2OH- 6,00 108 12,6 29 H2O2 O- O2- H2O 5,00 108 12,6 30 HO2- O- OH- O2- 4,00 108 12,6 31 H2 O- OH- H 8,00 107 12,6 32 O- H2O OH- OH 1,75 106 18,8 33 2HO2 H2O2 O2 8,30 105 24,7 34 H2O2 HO2 O2 OH H2O 0,2 20 35 O2- HO2 O2 HO2- 9,70 107 8,8 36 HO2 H O2- 7,50 105 12,6 37 2O2- 2H2O H2O2 O2 2OH- 0,3 12,6 38 H2O2 O2- O2 OH- OH 0,13 20 39 O2- HO2- O2 OH- O- 0,13 20 40 H O2- HO2 5,10 1010 12,6 41 H2O2 2OH 1,33 10-7 71,2 42 H2O2 OH- HO2- H2O 1,00 1010 12,6 43 HO2- H2O H2O2 OH- 1,13 106 12,6 44 H HO2- H2O2 2,00 1010 12,6 45 H OH- H2O 1,40 1011 12,6 46 H2O H OH- 2,52 10-5 45,4 47 O2 O- O3- 3,00 109 12,6 48 O- O3- 2O2- 7,00 108 12,6 49 H2O2 O3- O2 O2- H2O 1,60 106 12,6 50 HO2- O3- O2 OH- O2- 8,90 105 12,6 51 O3- O2 O- 3,00 102 12,6 52 H2 O3- O- OH- H 2,50 105 12,6 53 H O- OH 1,00 1010 12,6 54 OH- HO2 O2- H2O 1,00 1010 12,6 55 H2O2 0,5O2 H2O 1,80 10-6 62,1 56 Cu2 H Cu H 2,74 105 12,6 57 Cu2 eaq- Cu H2O 1,21 108 12,6 58 Cu H2O2 Cu2 OH OH- 2,22 104 12,6 59 Cu HO2 H2O Cu2 H2O2 OH- 6,99 106 12,6 60 Cu2 HO2 Cu H O2 3,64 103 12,6 61 2Cu2 H2 2Cu 2H 4,77 10-12 111 62 Cu O2 Cu2 O2- 3,24 107 14,2 63 H2O2 0,67O2 0,67H 0,67H2O 3,18 10-5 104,4 64 Fe2 OH Fe3 OH- 3,80 108 12,6 65 Fe3 H Fe2 H 9,90 107 12,6 66 Fe3 eaq- Fe2 H2O 1,97 1010 12,6 67 Fe2 HO2 Fe3 HO2- 2,10 106 12,6 68 H2O2 H2O 0,5O2 1,23 10-1 57,7 При моделировании радиолиза водного теплоносителя в медьсодержащих контурах совокупность реакций 1-55 была дополнена рядом реакций, учитывающих взаимодействие продуктов радиолиза воды с растворенной медью 56. Cu2 НCu H 57. Cu2 eaq-Cu H2О 58. Cu Н2О2Cu2 ОН ОН- 59. Cu НО2 Н2ОCu2 Н2О2 ОН- 60. Cu НО2Cu Н О2 Каталитическое действие ионов Cu2 на рекомбинацию Н2 и О2, представлено суммарной реакцией 61. Cu2 Н22Cu 2H Каталитическое действие ионов Cu2 на распад перекиси водорода интерпретировано в рамках следующего механизма 10 Константы скорости каталитического реакция 63 , а также термического реакция 55 распада Н2О2 были определены нами экспериментально и выражаются зависимостями , 1.5 где А1 4,8910-6с-1 Е1 77,7 кДж мольС , 1.6 где А2 6,2110-13с-1 Е2 104 кДж мольС 183 моль-1 0,596. При моделировании радиолиза воды в железо сталь содержащих контурах помимо реакций 1-63 таблицы 1.2 учитывались следующие реакции ионов растворенного Fe с продуктами радиолиза воды 64. Fe2 OH Fe3 OH- 65. Fe3 H Fe2 H 66. Fe3 e-aq Fe2 H2О 67. Fe2 HО2 Fe3 HО2- Каталитическое действие ионов Fe3 на распад перекиси водорода интерпретировано в рамках механизма, предложенного в 10 , из которого следует брутто-реакция 68. 2Н2О22Н2О О2, скорость этой реакции описывается уравнением 1.7 где 1.8 1.9 KF - константа гидролиза иона Fe3 , т.е. константа равновесия. Температурная зависимость константы KF была получена экстраполяцией ее экспериментальных значений при T 18,25 и 32 oC 1.10 где A 2,22 105 моль л E 10,25 ккал моль. Учитывая, что для реакторных контуров KF H , имеем 1.11 Рассчитанные и оцененные по доступным литературным данным константы скорости t 25оC и энергии активации реакций 56-68 приведены в таблице 1.2. Учет каталитического влияния поверхностей металлов контура на разложение H2O2 был проведен по следующей схеме.

При заданной температуре экспериментально определялись зависимости константы каталитического разложения H2O2 а от концентрации иона-катализатора Cu2 , Fe3 гомогенный катализ, б от отношения S V, где S - поверхность металла, V - объем раствора гетерогенный катализ. На основании полученных зависимостей строились корреляционные кривые Cu2 f1 SCu V Fe3 f2 SFe V при равенстве скоростей гомогенного и гетерогенного разложения H2O2. С помощью этих кривых каталитическое действие поверхностей металлов учитывалось при расчете радиолиза путем введения эквивалентной концентрации соответствующего иона-катализатора 10 . Исходными данными для расчета являются а мощности дозы от разных видов излучений в зонах облучений, б времена пребывания теплоносителя в зонах, в значения трековых радиационных выходов продуктов радиолиза, г константы скорости и энергии активации реакций, включенных в механизм радиолиза, д начальный химический состав теплоносителя концентрации Н2, О2, H2O2 и примесных ионов. Температурной зависимостью G пренебрегали.

Предполагалась аррениусовская зависимость от температуры констант скорости реакций из табл.1.2. Для решения системы обыкновенных дифференциальных уравнений, описывающих кинетику радиолиза, была использована система научных и технических расчетов MATLAB, Version 5.3, Release 10 . Данные, содержащиеся в этой модели очень важны в данной работе, для сравнения с экспериментальными данными по распаду перекиси водорода на циркониевых сплавах.

Вполне вероятно, что каталитическое воздействие Zr и Cu на распад перекиси имеют схожие механизмы. 1.3.3 Особенности кинетики разложения перекиси водорода в условиях ЯЭУ по материалам 4 , 7 , 11 Перекись водорода является одним из стабильных продуктов радиолиза теплоносителя кипящих реакторов.

Понимание химических свойств перекиси водорода, образующейся при радиолизе теплоносителя является важным фактором для решения проблем коррозии конструкционных материалов первого контура реакторов.

Хорошо известно, что разложение перекиси водорода на кислород и воду и обратная реакция может быть записана как 2 H2O2 2Н2О О2 Хотя перекись водорода существует при эксплуатации в теплоносителе при 2800С, измерение ее очень проблематично в основном из-за каталитического влияния поверхности контура. Таким образом, уровень содержания перекиси водорода в действующих реакторах до сих пор точно не известен.

Скорость гетерогенной каталитической реакции зависит и от массопереноса и от химической активации процессов.

В последних лабораторных исследованиях 4 разложения перекиси водорода в водных растворах было установлено, что при температурах ниже 2000 С реакции разложения H2O2 являются активационно контролируемыми, а выше 2000 С процесс массопереноса становится важным фактором в определении общей скорости реакции.

В работе 4 в типичном первом контуре реактора BWR скорости потока теплоносителя и отношение объем поверхность в различных точках подсчитаны по параметрам реактора.

Константы скорости контролирующего массопереноса подсчитаны с использованием этой информации и коэффициента диффузии и величин кинематической вязкости взятых из литературы. Объединив эти результаты и результаты лабораторных испытаний для констант скорости контролирующей активации экстраполированных к 2800 С, были рассчитаны общие константы скорости в произвольных точках первого контура реактора.

Половинный распад перекиси водорода происходит в интервале от нескольких секунд, в первом контуре, до несколько минут в контуре рециркуляции.

В случае гетерогенного катализа скорость реакции распада перекиси водорода зависит и от массопереноса и от химической активации.

Наблюдаемая константа скорости kobs связана с частными константами скорости по уравнению 1 kobs 1 kdif 1 kact, 1.12 или kobs kact kdif kact kdif , 1.13 где kact - константа скорости процесса химической активации, которая наблюдалась бы, если бы диффузия не ограничивала скорость реакции и kdif - константа скорости полной диффузии массопереноса. Можно складывать константы скоростей, так как процессы в гомогенной и гетерогенной фазе параллельны. Если константы kdif и kact относятся к процессам имеющим существенно различающиеся энергии активации, тогда это будет в большей степени реакция, контролируемая диффузией kobs ? kdif с одной стороны, и в большей степени определяемой активацией kobs ? kact с другой стороны, в широкой области температур.

На текущем этапе лабораторных исследований разложения перекиси водорода в водных растворах наблюдалось, что процесс массопереноса более медленный и поэтому является определяющим скорость процесса при высоких температурах.

Коэффициент массопереноса K при определенных параметрах потока может быть определен из следующей корреляции Sh 0.0023 Re0.8 Sc0.33, 1.14 , где Sh, Re, Sc константы Шервуда, Рейнольдса и Шмидта соответственно и Sh Kd D, Re dU V, Sc V D, где d - диаметр трубопровода. D - диффузия H2O2 U - скорость водного потока V - кинематическая вязкость Таким образом, коэффициенты массопереноса и константы скорости контролирующей реакции массопереноса могут быть рассчитаны как K 0.023Re0.8Sc0.5 D d , 1.15 Kdif K S V , 1.16 где S V соотношение поверхности реактора к объему теплоносителя, как определялось ранее.

Используя данные, представленные в литературе константы скорости реакции определяемой массопереносом, рассчитаны и сравнены с константами скорости разложения перекиси водорода измеренными в автоклавах рис 1.3 . В табл 1.3 представлены данные, использованные при подсчете коэффициентов массопереноса при 2800 С. Таблица 1.3 - Данные, использованные в расчете коэффициентов массопереноса параметр 250С 500С 1000С 2800С D см 0,49 0,49 0,49 0,49 U см с 8,7 8,8 9,0 11,6 S V см-1 8,16 8,16 8,16 8,16 D см2 с a, b 2,5 10-5 3,5 10-5 8,0 10-5 3,5 10-4 н см2 с а 9,0 10-2 5,5 10-3 3,0 10-3 1,4 10-3 Константы скорости реакции, определяемой активацией, рассчитаны по результатам лабораторных испытаний и экстраполированных к 2800 С по следующим уравнениям Kact 2 105 exp -14800 RT 1 8.16 , 1.17 Kact K S V , 1.18 Необходимо отметить, что в расчетах принималось во внимание только скорость водного потока и соотношение S V, такие факторы как особенности влияние различных конструкционных материалов и условия двухфазного потока во внимание не принимались. 2. ЦЕЛИ И ЗАДАЧИ Различные стали, медные и циркониевые сплавы являются конструкционными материалами, контактирующими с теплоносителем в условиях ЯЭУ и ХОЯТ. Их коррозия влияет на надежность и безопасность работы предприятий топливного цикла.

В связи с этим, исследование влияния действия продуктов радиолиза на коррозию и первую ее стадию - взаимодействие с окислителем - Н2О2 продуктом радиолиза теплоносителя актуальны.

Целью данной работы является исследование особенностей кинетики разложения перекиси водорода в контакте с циркониевым сплавом Zr 1 Nb. Основные задачи работы Сравнительный анализ кинетики гомогенного и гетерогенного разложения перекиси водорода при 900С Определение влияния соотношения S V на кинетику разложения Сравнение кинетики гетерогенного разложения перекиси водорода на различных металлах Предварительная оценка причин различия кинетик гетерогенного разложения на разных металлах перекиси водорода, как продукта радиолиза теплоносителя ЯЭУ и ХОЯТ. 3 Экспериментальная часть Проведены лабораторные экспериментальные исследования по изучению кинетики разложения перекиси водорода на металлических образцах сплава Zr-1 Nb в виде циркониевых фрагментов дистанционирующих решеток ТВС при различной площади поверхности контакта при температуре 900С. Для сравнения исследована кинетика разложения H2O2 в присутствии образцов из серебра, платины и оксида циркония в порошке . 3.1 Исследуемые материалы Для экспериментов использовались 1. Были исследованы циркониевые образцы в виде отдельных элементов дистанционирующей решетки.

ТВС тепловыделяющей сборки с различной термообработкой - штатная термообработка с последующим охлаждением на воздухе - вакуумная термообработка. с последующим охлаждением в вакууме Внешний вид образцов показан на рисунке 3.1 а б а б Рисунок 3.1 - Внешний вид образцов а - штатная технология термообработки, б - термообработка с охлаждением в вакууме.

Площадь одного образца S 14,13см2 l 1,5см, d 1.5см m 1.8г 6,45г см3 . 2.Стабилизированный раствор перекиси водорода H2O2 156,6 г л х. ч. 3. Платиновая проволока S 40 см2 d 0.1cм, m 21.2622 г, 21,45 г см3 4. Серебряная пластина S 160,68 см2 m 50,75 г, 10,5г см3 5. Порошок ZrO2 навеска 2 грамма, с 0,85 г см3 3.2 Методика проведения эксперимента Эксперименты проводились при температуре 90С в колбах из термостойкого стекла, объемом 1 литр. Необходимое количество дистиллированной воды доводили до нужной температуры, добавляли в колбы с дистиллированной водой перекись водорода до концентрации 1 г л, а затем погружали в раствор необходимое количество циркониевых образцов 3, 6, 9, 15 шт платину или серебро, исключая холостой опыт, когда образцы не добавлялись и сразу же отбирали пробу для определения концентрации перекиси водорода.

Отборы проб проводились с увеличивающимися интервалами времени в зависимости от темпа разложения перекиси водорода до разложения перекиси более чем в 2 раза. Для доведения до нужной температуры, и поддержания ее на протяжении всего эксперимента, колбы с раствором и погруженными в него образцами помещали в нагревательный шкаф, температура в котором поддерживалась с точностью 2С. Концентрация H2O2 определялась методом титрования KMnO4 с добавлением H2SO4 и MnSO4. Для учета влияния оксида циркония, который является продуктом коррозии сплавов циркония, на кинетику разложения перекиси был поставлен эксперимент в присутствии порошка оксида циркония ZrO2 с плотностью 0,85 г см3. Оценка применимости выбранной методики проводилась по результатам разложения перекиси водорода без образцов, то есть так называемых холостых опытах при температуре 900С. 3.3 Результаты испытанийПолученные по описанной выше методике данные, представлены в таблицах 3.1 - 3.3 и на рисунках 3.2-3.5, где ф - интервал времени между отборами проб, ч. H2O2 - концентрация перекиси водорода г л S - общая площадь образцов в эксперименте, см2. Таблица 3.1- Результаты испытаний по разложению H2O2 при 900С в присутствии образцов Zr со штатной термообработкой количество образцов в колбе и их общая площадь S Холостой опыт 3 образца 6 образцов 9 образцов 15 образцов S 0 см2 S 42,39 см2 S 84,78 см2 S 127,17 см2 S 211,95 см2 t, ч H2O2 г л t, ч H2O2 г л t, ч H2O2 г л t, ч H2O2 г л t, ч H2O2 г л исх. 1,00 исх. 1,00 исх. 1,00 исх. 1,00 исх. 1.01 0 0,96 0 0,93 0 0,94 0 1,00 0 1.01 2 0,85 1 0,87 2 0,82 0.5 0.93 0.5 0.98 5 0,68 4 0,70 5 0,68 1 0.91 1 0.96 20 0,17 20 0,25 20 0,32 1.5 0.87 1.5 0.93 25 0,11 25 0,19 25 0,27 2 0.84 2 0.92 2.5 0.81 2.5 0.90 3 0.78 3 0.86 4 0.74 4 0.83 5 0.68 5 0.79 6 0.63 6 0.76 6.5 0.61 23 0.40 22 0.26 25 0.37 25 0.21 Таблица 3.2 - Результаты испытаний по разложению H2O2 при 900С в присутствии образцов Zr с вакуумной термообработкой количество образцов в колбе и их общая площадь S Холостой опыт 3 образца 6 образцов 9 образцов 15 образцов S 0 см2 S 42,39 см2 S 84,78 см2 S 127,17 см2 S 211,95 см2 t, ч H2O2 г л t, ч H2O2 г л t, ч H2O2 г л t, ч H2O2 г л t, ч H2O2 г л исх 1,01 исх 1,11 исх 1,00 исх 1,00 исх 1,01 0 0,96 0 1,06 0 0,94 0 1,00 0 1.01 2 0,85 1 1,00 2 0,82 0.5 0.97 0.5 0.98 5 0,68 4 0,85 5 0,71 1 0.94 1 0.97 20 0,17 20 0,36 20 0,37 1.5 0.91 1.5 0.94 25 0,11 25 0,29 25 0,35 2 0.87 2 0.93 2.5 0.85 2.5 0.92 3 0.84 3 0.89 4 0.8 4 0.88 5 0.77 5 0.85 6 0.72 6 0.83 6.5 0.70 23 0.43 22 0.32 25 0.41 25 0.29 Таблица 3.3 - Результаты испытаний по разложению H2O2 при 900С в присутствии Pt Холостой 1 Pt, S 40см2 t C H2O2 , г л t C H2O2 , г л 1,01 0 0,96 0 0,98 2 0,85 0,25 0,93 5 0,68 0,5 0,86 15 0,17 1 0,72 20 0,11 2 0,32 23 0,09 3 0,16 Таблица 3.4 - Результаты испытаний по разложению H2O2 при 900С в присутствии Ag Холостой 1 Ag, S 160,68см2 t C H2O2 , г л t, ч C H2O2 , г л 1,01 0 0,96 0 1,00 2 0,85 0,25 0,95 5 0,68 0,5 0,85 15 0,17 1 0,58 20 0,11 2 0,23 23 0,09 3 0,09 Таблица 3.5 - Результаты испытаний по разложению H2O2 при 900С при добавлении порошка ZrO2 2 г л t, ч C H2O2 , г л 0 1,00 1 0 0,42 2 2 0,14 3 2,5 0,08 4 3 0,06 5 3,5 0,05 6 4 0,046 7 19 0,0004 На рисунках 3.2 - 3.5 приведены кинетические кривые изменения концентрации перекиси водорода в присутствии образцов Zr, Ag, Pt и порошка ZrO2 при 900С. а б Рисунок 3.2 - Кинетика изменения концентрации перекиси водорода во времени, t 900C а - образцы со штатной термообработкой, б - образцы с термообработкой с охлаждением в вакууме Из данных, приведенных на рисунке 3.2, видно, что степень разложения H2O2 зависит от количества образцов, то есть от суммарной поверхности циркония в растворе. Наблюдается снижение степени разложения перекиси водорода с увеличением поверхности контакта как для образцов со штатной термообработкой так и для образцов с термообработкой с охлаждением в вакууме.

Следует отметить, что в первые пять часов зависимость степени разложения перекиси водорода от количества образцов незначительна рис. 3.2 . Однако, чем больше время выдержки, тем большая разница наблюдается в степени разложения H2O2. а б Рисунок 3.3 - Кинетика разложения Н2О2 в присутствии образцов Pt, Ag и Zr штатная термообработка при 900С а -временной интервал 25 часов, б - временной интервал 5 часов, S - в см2. На рисунке 3.3 приведены данные по разложению перекиси водорода в присутствии платины и серебра.

Здесь же для наглядности приведены кинетические кривые по разложению перекиси в присутствии циркониевых образцов со штатной термообработкой.

Приведенные данные свидетельствуют о том, что в присутствии платины и серебра перекись водорода активно разлагается, в то время как в присутствии образцов циркония разложение H2O2 замедляется даже по сравнению с холостым опытом, то есть происходит стабилизация разложения перекиси водорода. а б в г Рисунок 3.4 - Сравнение разложения перекиси водорода в присутствии циркониевых образцов, со штатной термообработкой и с термообработкой с охлаждением в вакууме при 900 С а - три образца, б - шесть образцов, в - девять образцов, г - пятнадцать образцов На рисунке 3.4 приведено сравнение разложения H2O2 при 900С в присутствии циркониевых образцов с разной термообработкой.

Видно, что степень разложения перекиси водорода в присутствии образцов со штатной термообработкой несколько выше, по сравнению с образцами с вакуумной термообработкой.

Следует отметить, что чем больше образцов, тем меньше разница в степени разложения H2O2 между образцами с разной термообработкой, то есть с разной степенью окисления. Для уточнения влияния оксида циркония на степень разложения H2O2 проведены опыты с добавлением в раствор порошка ZrO2. Рисунок 3.5 - Кинетика разложения перекиси водорода в присутствии оксида циркония ZrO2 На рисунке 3.5 показана кинетика разложения перекиси водорода в присутствии порошка ZrO2. Наблюдается интенсивное разложение H2O2 в присутствии оксида циркония. По всей вероятности это происходит потому, что реакция разложения идет на порошке на большей площади, чем на поверхности металлических образцов. 3.3 Обработка результатов Изменение концентрации перекиси водорода описывается уравнением Сф С0 exp -Kф , 3.1 где Сф - текущая концетрация H2O2 моль л , С0 - начальная концентрация H2O2 моль л, ф - время разложения, с, К - постоянная, зависящая от условий опыта.

При этом К К1 К2, 3.2 где К1 - постоянная гомогенного термического, диффузионного механизма разложения перекиси водорода, К2 - постоянная гетерогенного механизма разложения перекиси водорода.

К2 зависит от температуры, вида гетерогенной поверхности и соотношения S V. При проведении экспериментов подтверждено 4 , что темп разложения H2O2 л зависит от температуры, соотношения S V СН2О2 f T, S V , 3.3 где - темп разложения моль л с СН2О2 - изменение концентрации перекиси водорода Ci - Ci 1 моль л за интервал времени i 1 - i с Т - температура, К CH2O2 - начальная концентрация перекиси водорода, моль л S - площадь поверхности образцов V - объем раствора. Приведем пример расчета темпа разложения H2O2 по данным холостого опыта из таблицы 3.1 4,34 10-7 Кроме темпа разложения, также были рассчитаны константы К1, К2 К1 ln Ci Ci-1 , 3.4 Пример расчета константы К1 по данным холостого опыта из таблицы 3.1 К1 ln 0.17 0.85 20 - 2 -0.09 Расчет константы К2 проводится в два этапа 1. Определяется константа К суммарная константа разложения перекиси водорода К ln Ci Ci-1 , 3.5 Пример расчета константы К по данным из таблицы 3.1 для процесса разложения в присутствии шести образцов К6 ln 0,32 0,82 20-2 -0,05 2. Определяется константа гетерогенного разложения перекиси водорода К2 К - К1, 3.6 Подставляя результаты, рассчитанные по формулам 3.2 и 3.3, определяем константу гетерогенного разложения перекиси водорода для шести образцов К26 -0,05 - -0,09 0,04 По результатам исследований были построены зависимости 0,5 f S K20,5 f S где 0,5 темп разложения, при 50 разложении перекиси водорода. 0,5 С0,5 ф0,5, 3.7 Расчет темпа разложения на примере холостого опыта по данным из таблицы 3.10 0,5 С0,5 0,5 хол 0,015 28800 5,21 10-7 моль л с К10,5 , 3.8 Расчет константы К10,5 на примере холостого опыта по данным из таблицы 3.10 К10,5 2,36 10-5 К20,5 , 3.9 Расчет константы К20,5 на примере холостого опыта по данным из таблицы 3.10 К20,5 0,001 Cср - концентрация в каждом временном интервале ф0,5, i В таблице 3.6 представлены результаты расчетов констант К, К1, К2. Таблица 3.6 - Результаты расчетов констант К, К1, К2 для образцов со штатной термообработкой. кол-во образцов S см2 К К1 К2 3 42,39 -0,060 -0,09 0,03 6 84,78 -0,050 0,04 9 127,17 -0,055 0,035 15 211,95 -0,040 0,05 Таблица 3.7 - Результаты расчетов констант К, К1, К2 для образцов с термообработкой с охлаждением в вакууме. кол-во образцов S см2 К К1 К2 3 42,39 -0,050 -0,09 0,04 6 84,78 -0,040 0,05 9 127,17 -0,050 0,04 15 211,95 -0,037 0,053 Рисунок 3.6 - Зависимость константы гетерогенного разложения перекиси водорода от площади добавленных в раствор образцов с разной термообработкой. В таблицах 3.8-3.11 представлены значения для образцов со штатной и с вакуумной термообработкой где - темп разложения моль л с ф - интервал времени между отборами проб S - площадь поверхности образцов. Таблица 3.8 - Значения темпа разложения, для образцов со штатной термообработкой, при 900С Холостой Опыт S 42,39 см2 3 Образца S 84,78 см2 6 Образцов S 127,17 см2 9 Образцов S 211,95 см2 15 Образцов ф, c л, моль л с ф, c л, моль л с ф, c л, моль л с ф, c л, моль л с ф, c л, моль л с 0 0 0 0 0 7200 4,34E-07 3600 5,21E-07 7200 5,21E-07 1800 5,55E-07 1800 4,85E-07 18000 4,63E-07 14400 4,63E-07 18000 3,70E-07 3600 4,87E-07 3600 2,78E-07 72000 4,20E-07 72000 3,38E-07 72000 2,93E-07 5400 6,24E-07 5400 4,17E-07 90000 9,04E-08 90000 9,04E-08 90000 8,68E-08 7200 4,87E-07 7200 2,19E-07 9000 4,15E-07 9000 3,37E-07 10800 4,87E-07 10800 6,94E-07 14400 3,47E-07 14400 2,42E-07 18000 4,86E-07 18000 3,13E-07 21600 3,82E-07 21600 2,78E-07 23400 4,15E-07 82800 1,72E-07 79200 1,86E-07 90000 1,39E-07 90000 1,089E-07 Таблица 3.9 - Значения темпа разложения, для образцов с термообработкой с охлаждением в вакууме, при 900С Холостой Опыт S 42,39 см2 3 Образца S 84,78 см2 6 Образцов S 127,17 см2 9 Образцов S 211,95 см2 15 Образцов ф, c л, моль л с ф, c л, моль л с ф, c л, моль л с ф, c л, моль л с ф, c л, моль л с 0 0 0 0 0 7200 4,34E-07 3600 4,86E-07 7200 4,88E-07 1800 3,46E-07 1800 3,46E-07 18000 4,63E-07 14400 4,28E-07 18000 3,23E-07 3600 4,18E-07 3600 2,78E-07 72000 4,20E-07 72000 3,63E-07 72000 2,72E-07 5400 4,15E-07 5400 4,17E-07 90000 9,04E-08 90000 1,11E-07 90000 5,90E-08 7200 7,65E-07 7200 1,37E-07 9000 2,09E-07 9000 2,11E-07 10800 2,075E-07 10800 4,85E-07 14400 3,47E-07 14400 1,39E-07 18000 2,78E-07 18000 2,083E-07 21600 3,47E-07 21600 1,39E-07 23400 4,17E-07 82800 1,91E-07 79200 1,97E-07 90000 1,021E-07 90000 7,62E-08 Значения 0,5 , К10,5 , К20,5, рассчитанные по формулам 3.7 - 3.9 и зависимости этих параметров от площади образцов, представлены в таблице 3.16 и 3.17 и на рисунках 5 и 6 для образцов со штатной и с вакуумной обработкой соответственно. Таблица 3.10 - Значения 0,5 , К10,5 , К20,5 для штатной термообработки образцов кол-во обр. S см2 t0.5, c Cср l0,5 K10,5 K20,5 0 0 28800 0.021 5.21E-07 2.36E-05 0.00109 3 42.39 30240 0.020 4.96E-07 2.22E-05 0.00108 6 84.78 34200 0.020 4.38E-07 1.98E-05 0.00096 9 127.17 38520 0.02 3.89E-07 1.72E-05 0.00086 15 211.95 63720 0.020 2.35E-07 1E-05 0.00049 а б в Рисунок 3.7 - Зависимости значений 0,5 , К10,5 , К20,5 от площади образцов Zr со штатной термообработкой.

Таблица 3.11 - Значения 0,5 , К10,5 , К20,5 для вакуумной обработки образцов кол-во обр. S см2 t0,5, c Cср l0,5 K10,5 K20,5 0 0 29520 0.021 5.0813E-07 2.3E-05 0.0011 3 42.39 40680 0.022 3.69E-07 1.92E-05 0.00085 6 84.78 37800 0.020 3.97E-07 1.79E-05 0.00087 9 127.17 50400 0.020 2.98E-07 1.32E-05 0.00066 15 211.95 70920 0.022 2.11E-07 9.18E-06 0.00042 а б в Рисунок 3.8 - Зависимости значений 0,5 , К10,5 , К20,5 от площади образцов Zr с вакуумной термообработкой.

Из рисунков 3.7 и 3.8 видно, что темп половинного разложения перекиси водорода падает с увеличением поверхности контакта H2O2 с образцами зависимость от поверхности контакта констант половинного разложения К10,5 и К20,5 имеет такой же характер. 4 Результаты и Обсуждение Данные таблиц и рисунков приведенных в главе 3, четко свидетельствуют темп разложения перекиси водорода зависит от соотношения S V. Цирконий выступает в качестве ингибитора стабилизатора гетерогенного разложения перекиси водорода.

Различие темпов разложения перекиси водорода в контакте с образцами циркония, имеющих разную термообработку с охлаждением в вакууме и на воздухе, то есть разную толщину оксида, указывает на влияние оксидов.

Для оценки влияния степени окисления образцов были проведены проверочные испытания с ZrO2 рис. 3.5 . Для сравнительного анализа гетерогенного разложения перекиси водорода на разных материалах проведены проверочные испытания с образцами платины и серебра, привлечены литературные данные по меди 3 . и по нержавеющей стали Х18Н10Т 4 . На рисунке 4.1 приведены данные о разложении перекиси водорода на циркониевых сплавах в сравнении с данными из 3 Рисунок 4.1 - Интенсивность разложения Н2О2 на платине и серебре в сравнении с разложением на образцах циркония со штатной обработкой S Zr одного обр. 14,13см2, S Ag 40 см2, S Pt 161 см2 а б Рисунок 4.2 - Сравнение результатов разложения перекиси водорода в присутствии образцов Pt, Ag, Zr, Cu а - интервал 25 часов, б - интервал 5 часов На рисунке 4.2 проведено сравнение интенсивности разложения перекиси водорода в присутствии образцов платины, серебра, меди и циркония штатная термообработка. Наиболее активно разлагается в присутствии медных образцов, а наименее активно в присутствии циркониевых.

Видно, что даже если исключить влияние площади, интенсивность разложения все равно будет различной.

Это указывает на то, что не только наличие твердой поверхности влияет на разложение перекиси водорода.

Темп разложения перекиси водорода на твердых поверхностях зависит от многих факторов от температуры, от площади поверхности, а также от индивидуальных особенностей металла, его свойств и структуры.

При взаимодействии металла и Н2О2 на границе раздела образуется слой поверхностных соединений.

Поверхностные соединения образуются только в том случае, когда энергия возникающей химической связи недостаточна, чтобы оторвать поверхностные атомы твердого тела от кристаллической решетки при условии, что сообщаемая извне энергия тоже недостаточна.

При изменении условий, например при повышении температуры, вместо поверхностного соединения могут образоваться обычные объемные продукты реакции.

Скорость образования поверхностных соединений не слишком велика и зависит от температуры.

Это указывает на то, что процесс требует определенной энергии активации.

Возможность образования теми или иными твердыми телами поверхностных соединений определяется прочностью межатомных связей в кристаллической решетке рассматриваемых твердых тел. Силу межатомного взаимодействия оценивают по величине таких физических констант как атомный объем, температура плавления, плотность и т.п. Периодическое изменение атомных объемов с увеличением порядкового номера элемента указывает на то, что образование поверхностных соединений наиболее вероятно на простых телах, а также на металлах, занимающих середины больших периодов системы Д. И. Менделеева.

Среди этих металлов Cu, Ag, Zr, Pt. Все эти металлы - элементы с переменной валентностью, что способствует образованию поверхностных соединений.

Среди тех или иных газов и паров рассматриваемые простые тела могут образовывать поверхностные соединения самого различного характера оксиды различного состава, гидриды, нитриды, и т.д. Образование поверхностных соединений связывают с адсорбцией.

Принято различать два вида адсорбции - физическую и химическую, хотя, несомненно, существует много промежуточных типов.

При физической адсорбции адсорбированный слой связан с поверхностью силами Ван-дер-Ваальса, а при химической адсорбции хемосорбции - силами химического взаимодействия.

Адсорбция может протекать быстро или медленно в последнем случае это может служить указанием на наличие активационного барьера.

При повышении температуры физическая адсорбция может переходить в хемосорбцию, если тепловая энергия превышает энергию активации такого процесса. Адсорбированный атом может ионизоваться вследствие обмена зарядом с твердым телом рис. 4.3 13 . Если высший заполненный энергетический уровень атома лежит выше свободного уровня в твердом теле, электрон может перейти к твердому телу, а адсорбированная частица станет положительно заряженной а если же незаполненный энергетический уровень адсорбированного атома лежит ниже уровня Ферми в твердом теле, электрон может перейти к атому, который превратиться в отрицательно заряженный ион б. Вероятность подобных переходов зависит от величины энергетического барьера между адсорбированным атомом и твердым телом. а б Рисунок 4.3 - Энергетические уровни атома или молекулы хемосорбированного газа Также электронные свойства твердого тела влияют на его каталитическую способность.

Теории, с помощью которых пытаются объяснить роль d- зон в катализе переходными металлами, несколько отличаются друг от друга в деталях, но основное внимание в них обращено на повышенную плотность электронов в d- зонах по сравнению с s- и p- зонами, что используется в качестве подтверждения образования химической связи хемосорбированных частиц с поверхностью.

В нашем случае Cu, Ag, Pt являются катализаторами разложения перекиси водорода, а Zr является ее стабилизатором.

Если построить зависимость темпа половинного разложения перекиси водорода от потенциала ионизации внешней оболочки по данным таблицы 4.1 , то получим зависимость, изображенную на рисунке 4.4 Таблица 4.1 - Величины потенциалов ионизации 12 и темпа половинного разложения для серебра S 160.68 см2 , платины S 40 см2 , воды, меди S 73.85см2 и циркония S 211.95см2 Химический элемент Кол-во электронов I л0,5 Ag 1 7,6 3,53E-06 Cu 1 1 7,73 7,86E-06 Pt 1 9 2,78E-06 Zr 15 2 13,13 2,35E-07 Рисунок 4.4 - Зависимость темпа разложения от потенциала ионизации Ag S 160,68 см2 , Pt S 40 см2 , Cu 1 образец, S 73,85 см2 , Zr 15 образцов, S 211,95 см2 . На рисунке 4.4 видно, что наблюдается корреляция между темпом половинного разложения перекиси водорода и потенциалом ионизации, что свидетельствует о влиянии индивидуальных особенностей металла, на кинетику разложения. 5 заключение и выводы.

Результаты, приведенные в данной работе, свидетельствует о том, что процесс взаимодействия продуктов радиолиза теплоносителя с материалами контура очень сложен, и зависит от многих связанных между собой факторов.

Полученные результаты могут способствовать объяснению механизма коррозии и развитию модели коррозии конструкционных материалов.

После анализа полученных экспериментальных данных можно сделать следующие выводы. 1. Изучена кинетика гетерогенного разложения Н2О2 в присутствии циркониевых образцов разной степени окисления поверхности. Установлено что 1 Степень разложения Н2О2 зависит от площади циркониевых образцов причем, чем больше площадь, тем ниже степень разложения , 2 Цирконий выступает в качестве стабилизатора гетерогенного разложения Н2О2. Причем степень разложения на окисленных образцах выше, чем на неокисленных образцах.

Результаты экспериментов с ZrO2 подтверждают этот вывод. 2. На базе экспериментальных и литературных данных проведен сравнительный анализ гетерогенного разложения Н2О2 на различных образцах нержавеющая сталь, медь, цирконий платина и серебро. Установлено, что степень разложения Н2О2 увеличивается в ряду Zr, разложение перекиси без образцов, нержавеющая сталь, Pt, Ag, Cu. 3. Рассчитаны константы гомогенного и гетерогенного механизма разложения перекиси водорода и суммарная константа механизма разложения. 4. Установлена корреляционная зависимость между потенциалом ионизации и степенью разложения перекиси водорода, что свидетельствует о влиянии индивидуальных свойств металла на разложения перекиси водорода.

Список литературы 1. Березина И.Г. Разработка способов снижения коррозии оболочечного циркониевого сплава и повышения надежности ТВС РБМК-1000 при их эксплуатации и хранении ОЯТ диссертация на соискание ученой степени кандидата наук, на правах рукописи.

Санкт-Петербург 1998, 187 с. 2. Нечаев А. Ф. Химическая технология теплоносителей ядерно-энергетических установок , Москва, Энергоатомиздат,1985, 311 с. 3. Влияние содержания продуктов коррозии в теплоносителе на кинетику разложения перекиси водорода в контуре ITER ,Садовникова Л. Б Березина И. Г Крицкий В. Г Васильев В. Н. ГИ ВНИПИЭТ 2001, 9 с. 4. Lin C.C. Decomposition of hydrogen peroxide in BWR coolant circuit.

Water chemistry of nuclear reactor BNES 6, London, 1992. 5. С. А. Кабакчи , Г. П. Булгакова Радиационная химия в ядерном топливном цикле , Москва, РХТУ им. Д.И. Менделееева, 1997, 50 с. 6. Коррозия реакторных материалов сборник статей под редакцией В.В. Герасимова Госатомиздат 1960, Москва 282 с. 7. В. Г. Крицкий Проблемы коррозии и водно-химических режимов АЭС С-Пб, СИНТО,1996, 264 с. 8. К. Бейли Торможение химических реакций , Ленинград, государственное научно-техническое издательство химической литературы, 1940, 338 с. 9. Перекись водорода и перекисные соединения, под редакцией М. Е. Позина Москва, Госхимиздат, 1951, 480 с. 10. Оценка радиолиза водного теплоносителя и его влияние на водно-химический режим системы охлаждения , Крицкий В. Г Бобров Ю. Г Березина И. Г Садовникова Л. Б. ГИ ВНИПИЭТ , 2000, 10 с. 11. Corrosion of zirconium alloys in nuclear power plants , IAEA, Vienna, 1993. 12. Химия и периодическая система под ред. К. Сайто, Москва, Мир. 1982, 320 с. 13. Н. Хенней Химия твердого тела , Москва, Мир, 1971, 224с. 14. Алесковский В. Б. Химия твердых веществ , Москва, высшая школа, 1978, 256 с. 15. Пикаев А. К. Импульсный

– Конец работы –

Эта тема принадлежит разделу:

Влияние продуктов радиолиза на коррозию реакторных материалов

Работа содержит 15 таблиц, 13 рисунков и три приложения. Ключевые слова гетерогенное разложение перекиси водорода, цирконий, кинетика,… Тема дипломной работы - теоретическое и экспериментальное изучение влияния продуктов радиолиза на коррозию реакторных…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Аналитический обзор

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Физическая стадия
Физическая стадия. На этой стадии, длящейся 10-16 - 10-15с, происходит взаимодействие падающей частицы или высокоэнергетического кванта с электронными оболочками молекул воды. Последние обладают эн

Физико-химическая стадия
Физико-химическая стадия. За время колебания молекул воды около 10-14 c происходит диссоциация возбужденных и автоионизация сверхвозбужденных молекул воды H2O H OH- распад из синглетно возбужденной

Разложение паров перекиси водорода
Разложение паров перекиси водорода. По данным 7 , пары Н2О2 при температурах от 100 до 500 мало разлагаются медной и железной проволоками, кусками стекла, стеклянной ватой, кусками пористой керамик

Влияние твердых поверхностей на разложение перекиси водорода
Влияние твердых поверхностей на разложение перекиси водорода. Влияние твердых поверхностей на химические реакции общеизвестны в сильной степени оно проявляется и при реакции разложения перекиси вод

Математическое моделирование радиолиза теплоносителя
Математическое моделирование радиолиза теплоносителя. При эксплуатации ядерных энергетических установок возникают проблемы, решение которых оказывается возможным только после количественного опреде

Особенности кинетики разложения перекиси водорода в условиях ЯЭУ
Особенности кинетики разложения перекиси водорода в условиях ЯЭУ. по материалам 4 , 7 , 11 Перекись водорода является одним из стабильных продуктов радиолиза теплоносителя кипящих реакторов.

Исследуемые материалы
Исследуемые материалы. Для экспериментов использовались 1. Были исследованы циркониевые образцы в виде отдельных элементов дистанционирующей решетки. ТВС тепловыделяющей сборки с различной т

Методика проведения эксперимента
Методика проведения эксперимента. Эксперименты проводились при температуре 90С в колбах из термостойкого стекла, объемом 1 литр. Необходимое количество дистиллированной воды доводили до нужной темп

Обработка результатов
Обработка результатов. Изменение концентрации перекиси водорода описывается уравнением Сф С0 exp -Kф , 3.1 где Сф - текущая концетрация H2O2 моль л , С0 - начальная концентрация H2O2 моль л, ф - вр

Результаты и обсуждение
Результаты и обсуждение. Данные таблиц и рисунков приведенных в главе 3, четко свидетельствуют темп разложения перекиси водорода зависит от соотношения S V. Цирконий выступает в качестве ингибитора

Заключение и выводы
Заключение и выводы. Результаты, приведенные в данной работе, свидетельствует о том, что процесс взаимодействия продуктов радиолиза теплоносителя с материалами контура очень сложен, и зависи

Охрана труда и окружающей среды
Охрана труда и окружающей среды. При проведении научных исследований необходимо создать максимально здоровые и безопасные условия труда. В условиях химических лабораторий в задачи охраны труда вход

Стандартизация
Стандартизация. Данная работа выполнена с соблюдением следующих ГОСТов 1. СТП СПБ ГТИ 017-97, Положение о выпускной квалификационной работе дипломированного специалиста. 2. СТП СПБ ГТИ 006-01, подг

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги