рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

многослойный п/п прибор

многослойный п/п прибор - Дипломная Работа, раздел Высокие технологии, Исследование Вольтамперных Характеристик Полупроводниковых Приборов И Слоисты...

Исследование вольтамперных характеристик полупроводниковых приборов и слоистых структур С О Д Е Р Ж А Н И Е ВВЕДЕНИЕ 1. ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ПОЛУПРОВДНИКОВЫХ ПРИБОРОВ 1.1 Идеализированные статические вольтамперные характеристики транзисторов 1.2 Реальные статические вольтамперные характеристики транзисторов 2. ФИЗИЧЕСКИЕ ПРОЦЕССЫ ПРОИСХОДЯЩЩИЕ В ПРИБОРАХ ТУННЕЛИСТОР и БИСПИН 2.1 Идеальный контакт металл-полупроводник 2.2 Реальный контакт металл-полупроводник 2.3 Неустойчивость тока в транзисторной структуре с контактом металл-полупроводник 3. ИССЛЕДОВАНИЕ СЕМЕЙСТВА ВОЛЬТАМПЕРНЫХ ХАРАКТЕРИСТИК ПРИБОРОВ ТУННЕЛИСТОР и БИСПИН 3.1 Семейство вольтамперных характеристик приборов с общим В-электродом (базой) 3.2 Семейство вольтамперных характеристик приборов с общим А-электродом 3.3 Семейство вольтамперных характеристик приборов с общим С-электродом 4. ЛАБОРАТОРНАЯ РАБОТА: "ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК И ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ И СТРУКТУР" ЗАКЛЮЧЕНИЕ СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ В настоящей дипломной работе разработана установка и методика исследования семейств характеристик полупроводниковых приборов.

Цель дипломной работы состояла в постановке лабораторной работы исследовательского характера для практикума по физике полупроводниковых приборов по исследованию вольтамперных характеристик не только ставших широко известных полупроводниковых приборов диодов и транзисторов, но и абсолютно новых приборов разработанных и исследуемых на кафедре физики полупроводников ТУННЕЛИСТОР и БИСПИН. Лабораторная работа "Исследование характеристик и параметров полупроводниковых приборов" поставлена на основе отремонтированного и модернизированного характериографа TR4802. Методика выполнения лабораторной работы построена по принципу "от простого к сложному". Лабораторная работа дает возможность студентам на практике ознакомиться с реальными полупроводниковыми приборами и изучить характеристики новых приборов, ТУННЕЛИСТОР и БИСПИН. Лабораторная работа предназначена для студентов 5 курса. Дипломная работа и описанная в ней лабораторная работа позволяет эффективно использовать физически устаревшее оборудование в учебном процессе, давая возможность отказаться от закупок дорогих приборов.

В В Е Д Е Н И Е Современные условия жизни требуют от студентов хорошую теоретическую подготовку и, что особенно важно, практические знания и умения - столь необходимые в рыночной экономике.

Студент умеющий работать со сложными приборами и установками, самостоятельно изучать научную литературу и делать необходимые выводы, имеет значительные шансы на успех в своей деятельности.

Важное место в подготовке квалифицированных специалистов отводится лабораторному эксперименту, который является одной из основных форм самостоятельной работы студентов.

Главная роль лабораторных работ заключается в том, что студенты сталкиваются с реальными задачами и проблемами, учатся практически оценивать полученные результаты. Цель дипломной работы: поставить лабораторную работу исследовательского характера и разработать методику ее выполнения для практикума по физике полупроводниковых приборов с исследованием вольтамперных характеристик не только ставших широко известных полупроводниковых приборов диодов и транзисторов, но и абсолютно новых приборов разработанных и исследуемых на кафедре - ТУННЕЛИСТОР и БИСПИН. Изучение новых, не описанных в широкой научной литературе полупроводниковых структур должно стимулировать студента к самостоятельной и вдумчивой работе и заставить серьезно вникнуть в суть происходящих явлений внутри кристаллов.

Дополнительная цель данной работы - это составление теоретической и практической части лабораторного эксперимента доступным языком без изобилия сложных технических терминов, что позволит сделать работу легко читаемой и доступной для понимания. 1. ПАРАМЕТРЫ И ХАРАКТЕРИСТКИ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ И МЕТОДЫ ИХ ИЗМЕРЕНИЯ. С момента изобретения полупроводниковых приборов, они нашли широкое применение в самой разнообразной аппаратуре.

Это связано с их преимуществами перед вакуумными лампами, отсутствие цепей накала, миниатюрное конструктивное оформление, высокая механическая прочность и практически мгновенная готовность к работе, что позволило коренным образом изменить внешний облик и функциональные возможности аппаратуры.

Дальнейшее развитие полупроводниковой электроники пошло двумя путями: - по пути интеграции дискретных активных и пассивных элементов в одной гибридной или монолитной схеме; - по пути создания принципиально новых полупроводниковых приборов, которые заменяют целые узлы в радиоэлектронной аппаратуре, что многократно уменьшает ее вес, габариты и увеличивает надежность.

В настоящее время создано огромное количество интегральных схем и исследовать их характеристики просто не имеет смысла, так как обычно серьезные производители прилагают к своим изделиям подробные описания, но основные элементы микросхем не так многочисленны.

Это диоды, стабилитроны, стабисторы, туннельные диоды, диоды с баръером Шоттки, полевые и биполярные транзисторы, тиристоры и семисторы, варикапы. Благодаря научно-исследовательской работе сотрудников КубГУ появились новые полупроводниковые структуры: ТУННЕЛИСТОР и БИСПИН.[1,2] Из учебников по физике полупроводников /3/ нам известно, что каждый полупроводниковый прибор или структура должна обладать своими специфическими характеристиками благодаря которым такие приборы возможно использовать для построения радиоэлектронной аппаратуры.

Важнейшими параметрами диодов используемых в аппаратуре для получения постоянных токов является прямой и обратный токи. Прямой ток можно измерить по схеме приведенной на рис.1а. К диоду приложено прямое напряжение Миллиамперметр измеряет прямой ток диода Резистор защищает миллиамперметр от перегрузки при подключении неисправного (пробитого) диода.

Измерение обратного тока производится по схеме изображенной на рис.1б. Источник создает на диоде обратное напряжение. Микроамперметр защищен от перегрузки ограничительным резистором. Обычно обратный ток измеряется при максимально допустимом напряжении для данного типа диода (можно узнать в справочнике). Далее, если плавно изменять прямое или обратное напряжение и записывать данные миллиаперметра, можно построить график зависимости прямого и обратного тока через диод от приложенного напряжения.

Такой график, как известно, называется вольт-амперной характеристикой (сокращенно ВАХ). График зависимости тока от приложенного напряжения является важнейшей характеристикой по которой сравниваются отдельные полупроводниковые приборы. Качество диода можно охарактеризовать также его коэффициентом выпрямления: При комнатной температуре коэффициент выпрямления достигает нескольких тысяч, причем у кремниевых диодов он больше, чем у германиевых.

Основные параметры биполярных транзисторов можно измерять аналогичным способом. Обратный ток коллектора транзистора структуры p-n-p измеряется по схеме рис.2а а структуры n-p-n по схеме рис.2б. Обратное напряжение от источника приложено к коллекторному переходу транзистора, эмиттер которого остается свободным. Протекающий через переход обратный ток коллектора измеряется микроамперметром, защищенным от перегрузок ограничительным резистором. При комнатных температурах обратный ток не превышает нескольких микроампер у маломощных и десятков микроампер у мощных.

Начальный ток коллектора измеряется с помощью схем рис.2 в, г. Между базой и эмиттером транзистора включается резистор, сопротивление которого выбирается в пределах 500-1000 Ом для маломощных и 0-2 Ом для мощных транзисторов. Измеряемый микроамперметром, который защищен от перегрузок ограничительным резистором, начальный ток коллектора маломощных транзисторов при комнатных температурах составляет единицы, а мощных - десятки микроампер.

Статическим коэффициентом передачи тока в схеме с общим эмиттером называется отношение постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор-эмиттер и токе эмиттера в схеме с общим эмиттером: Приближенное значение статического коэффициента передачи тока можно измерить с помощью простых схем рис.2д, е. Если пренебречь малым прямым сопротивлением эмиттерного перехода транзистора по сравнению с сопротивлением резистора в цепи базы, то ее ток равен, и статический коэффициент передачи тока: Таким образом, показания миллиамперметра пропорциональны статическому коэффициенту передачи тока. При рассмотрении работы транзистора необходимо учитывать, что существуют идеализированные и реальные статические характеристики.

При рассмотрении идеализированной модели транзистора идеализация заключается в том, что модель транзистора считается одномерной, когда высота базового перехода гораздо меньше величины квадратного корня из площади сечения транзистора, т.е. размеры транзистора в направлениях, перпендикулярных главной оси, много больше толщины базы. В этом случае можно предположить движение носителей только вдоль главной оси без отклонения в стороны.

Идеализация заключается также в том, что не учитываютя объемные сопротивления слоев. Рассмотрим формулы Молла-Эберса, которые, несмотря на их приближенность, очень полезны для анализа статических режимов работы транзистора, так как хорошо отражают основные особенности транзисторов при любых сочетаниях напряжений на переходах [4]. Приступая к выводу основных характеристик, пренебрежем эффектом модуляции толщины базы вместе с его следствиями.

Тогда для транзистора можно принять такую эквивалентную схему, которая показана на рис.3. Здесь каждый из переходов изображен в виде диода, а взаимодействие их отражено генераторами токов. Так, если эмиттерный переход открыт и через него протекает ток, то в цепи коллектора будет протекать несколько меньший ток, т.к. часть инжектированных носителей рекомбинирует.

В общем случае токи эмиттера и коллектора складываются из двух компонентов: инжектируемого ( или ) и собираемого ( или ): Связь инжектируемых компонентов с напряжениями на переходах такая же, как и в отдельном диод: Обозначив ток эмиттера при большом отрицательном смещении ( ) и оборванном коллекторе через (тепловой ток эмиттера), аналогичным путем получим: (1.9) Подставив токи и из (1.6) и (1.7) в соотношения (1.4) и (1.5), найдем зависимости и, т.е. статичес- кие вольт-амперные характеристики транзистора: (1.10) (1.11) Запишем еще ток базы, равный разности токов и : (1.12) Формулы Молла-Эберса (1.10 - 1.12) приближены, но очень по- лезны при анализе статических режимов работы транзисторов.

Необ- ходимо уточнить, что количественные расчеты по формулам (1.10 - 1.12) в случае кремниевых транзисторов дают значительную погреш- ность, так как обратные токи у кремниевых транзисторов нельзя считать тепловыми. 1.1 Идеализированные статические вольт-амперные ха- рактеристики транзисторов.

Если на p-n переходе является заданной величиной эмиттерный ток, а не эмиттерное напряжение, то выражая двучлен из формулы (1.10) и подставляя его в (1.11), получаем: (2.1) Это выражение представляет собой семейство коллекторных с параметром [4]. Такое семейство изображено на рис.4а. Семейство эмиттерных характеристик с параметром получа- ется из выражения (1.10), если разрешить его относительно. Ис- пользуя соотношение (2.2) получаем: (2.3) Эмиттерное семейство характеристик показано на рис.4б. Из рисунка 4а ясно видно два резко различных режима работы транзистора: активный режим, соответствующий значениям и ре- жим насыщения, соответствующий значениям. Для активного ре- жима формулы (2.1) и (2.3) переходят в следующие: (2.4) (2.5) Характеристики на рис.4а являются эквидистантными, т.к. при построении параметр принят постоянной величиной.

В характеристиках эмиттерного семейства (рис.4б) кривая с параметром является обычной диодной характеристикой. При значениях кривые сдвигаются вправо и вниз в связи с нараста- нием эмиттерного тока. При значениях кривые очень незначи- тельно смещаются влево и вверх. 1.2 Реальные статические вольт-амперные характе- ристики транзисторов.

В формулах Молла-Эберса не учитывается целый ряд факторов, таких, как эффект Эрли (зависимость толщины базы от ), пробой перехода, зависимость от тока и пр. Поэтому характеристики на рис.4 в значительной степени идеализированны.

Реальные коллектор- ные и эмиттерные характеристики показаны на рис.5. Кривые коллекторного семейства имеют конечный, хотя и очень небольшой наклон, который в области, близкой к пробою, резко уве- личивается. Расстояние между кривыми немного уменьшается при больших токах из-за роста тока. В активном режиме можно характеризовать коллекторное семейс- тво соотношением: (2.6) Кривые эмиттерного семейства образуют довольно плотный "пу- чок" (рис.5б), потому что влияние коллекторного напряжения на эмиттерное очень мало. При нагреве кривые смещаются влево в об- ласть меньших напряжений.

При достаточно большом токе входные вольт-амперные характеристики деформируются. На кафедре физики полупроводников КубГУ на базе МТОП-струк- туры был разработан новый полупроводниковый прибор - ТУННЕЛИСТОР - твердотельный функциональный генератор электрических колебаний. В основе его работы лежит явление поверхностно-барьерной неустой- чивости тока (сокращенно ПБНТ).[5,6] Прибор ТУННЕЛИСТОР представляет собой полупроводниковую пластинку, имеющую омический контакт с нанесенным на нее активным контактом металл-тунельно прозрачный окисел полупроводник, кото- рый, для краткости, в соответствии с его назначением - эмиттиро- вать электроны из ПС и металла - назван эмиттером.

На противопо- ложной стороне пластины на расстоянии, меньшем диффузионной длины неосновных носителей, создается плоскостной p-n - переход, кото- рый в соответствии с его назначением поставлять неосновные носи- тели в базу назван инъектором.

Площадь инъектора на один-два по- рядка больше площади эмиттера (рис.6,7) 2. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ПРИБОРЕ ТУННЕЛИСТОР. Контакт металл-полупроводник является обязательным элементом всех полупроводниковых приборов и устройств и может использовать- ся для двух различных целей; во-первых, как омический контакт, во-вторых, как активный элемент различных полупроводниковых при- боров - точечно-контактных и поверхностно-барьерных диодов и транзисторов, приборов с барьером Шоттки и т.д. Остановимся под- робней на своеобразных явлениях, происходящих в этих контактах. 2.1.

Идеальный контакт металл-полупроводник

Идеальный контакт металл-полупроводник. Пусть имеются образцы металла и полупроводника n - типа с плоскими пов... Поэтому контактное поле не в состоянии изменять ширину запрещенной зон... глубина проникновения контактного поля в полупровод- ник. Предположим, что электрическое поле проникает в полупровод- ник на нек...

Реальный контакт металл-полупроводник

И.Е.Тамм впервые показал, что обрыв пе- риодического потенциала криста... Таким образом, на реальной поверхности полупроводника всегда имеется с... Поверхностные уровни-ловушки находятся в запрещенной зоне, и попавшие ... Это означает, что скачок уровня Ферми находится именно в приконтактном... Так как заряд на поверхностных состояниях при протекании то- ка заметн...

Неустойчивость тока в транзисторной структуре с контактом металл-полупроводник

При увеличении Rн, например, до 5 кОм, неустойчивость не срывается при... Изучена. Сдвиг характеристик в сторону отрицательных токов обусловлен запирание... 30.12.86. При такой схеме измерения А-область оказывается включенной в прямом на...

литература по характеристикам и параметрам полупроводниковых приборов. 2. Изучена литература по свойствам контактов металл-полупроводник, а также литература по поверхностно - барьерной неустойчивости тока и принципу работы приборов ТУННЕЛИСТОР и БИСПИН. 3. Отремонтирован и модернизирован характериограф TR-4802. 4. Сняты и сфотографированы семейства вольтамперных характеристик известных и новых, разработанных на кафедре физики полупроводников полупроводниковых приборов при различных схемах подключения. 5. Разработана подробная методика выполнения лабораторной работы исследовательского характера, для студентов старших курсов построенная по принципу "от простого к сложному".

– Конец работы –

Используемые теги: многослойный, п/п, Бор0.06

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: многослойный п/п прибор

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Лекция 16. Теория атома водорода по Бору. Элементы квантовой механики. План лекции 2. Постулаты Бора. Спектр атома водорода по Бору
гл... План лекции... Ядерная модель атома Резерфорда Постулаты Бора Спектр атома водорода по Бору...

Общие сведения о технологическом процессе сборки оптико-электронных приборов. Контрольно-юстировочные приборы
Узел представляет собой конструктивный и сборочный элемент изделия, который может быть собран и проверен самостоятельно и независимо от других узлов… Юстировка – это качественное завершение сборочных операций прибора в… В ряде случаев юстировки представляет собой сложную задачу. Иногда она выполняется в несколько этапов…

Полупроводниковые приборы и электронные лампы
Область n - типа называют отрицательным электродом, а область p - типа - положительным электродом полупроводникового диода. Диод хорошо пропускает ток, когда его отрицательный электрод соединен с… В результате вблизи p - n перехода произойдет накопление положительных и отрицательных зарядов, и поэтому…

Классификация электроизмерительных приборов
Это обозначают условными знаками на шкале прибора, приведенными. На приборах переменного тока указывают номиналь¬ное значение частоты или диапазон… Класс точности прибора обо¬значают числом, равным допускаемой приведенной… Класс точности прибора является его обобщенной метрологической характеристикой.

Электродинамические и электромагнитные измерительные приборы
Принцип действия электродинамических преобразователей основан на взаимодействии магнитных полей токов, протекающих по неподвижной и подвижной… Это создает конструктивные удобства при размещении подвижной части и, кроме… Выполняются неподвижные катушки, как правило, из медного провода. Подвижная катушка 2 выполняется из медного или…

Пути улучшения окружающей среды г.Бор
Такой механизм учета смертности работает на маскировку эффектов, связанных, например, с последствиями испытаний ядерного оружия в атмосфере:… И если о возникновении инфекционных заболеваний требуется сообщать сразу же… Как только список ключевых индикаторов состояния здоровья будет готов, ООН обязан его обнародовать, а каждое…

Электрические измерительные приборы
Тип урока: Урок изучения нового материала Основной метод проведения урока: Эвристическая беседа Оборудование: Соединительные провода, амперметр,… Мотивационный этап: - На уроках физики вы уже сталкивались с измерительными… К этим приборам относятся: амперметр, вольтметр, ваттметр, счетчики и т.д которые используют магнитное, тепловое и…

Электрический ток в вакууме. Электровакуумные приборы
Физической характеристикой вакуума есть соотношение между длиной свободного пробега молекул и размером сосуда, между электродами прибора и т.д.… Так когда же можно считать, что в сосуде создан вакуум? Молекулы воздуха,… И вот наступает момент, когда длина свободного пробега становится равной размерам сосуда: молекула движется от стенки…

Термометры сопротивления и измерительные приборы к ним
При измерении температуры термометр сопротивления погружают в среду, температуру которой необходимо определить. Зная зависимость сопротивления термометра от температуры, можно по изменению… Термометры сопротивления из чистых металлов, получившие наибольшее распространение, изготовляют обычно в виде обмотки…

Автоколлимационные зрительные трубы. Широкоугольные коллиматоры. Ошибки изготовления и положения оптических деталей приборов
Зеркало располагается в параллельном пучке между линзами О1 и О2 под углом 45° и оптической оси трубы. Освещение производят при помощи третьей линзы О3, в фокусе которой помещают… ДИНАМЕТРЫ. Динаметр применяют для измерения размеров выходных зрачков оптических приборов, а также удаления зрачка…

0.035
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам
  • Коммерческий анализ ассортимента бытовых электрохолодильных приборов, реализуемых торговой сетью РБ Вентиляция предусмотрена не только в холодильнике, но и в морозильной камере. Контроль влажности и регулировка температуры позволяют создать… Количество сохраняемых продуктов определяется общим объемом камеры, объемом… Важно учитывать и время достижения установленной температуры.
  • ИСКУССТВО ПОДБОРА ПЕРСОНАЛА На сайте allrefs.net читайте: "ИСКУССТВО ПОДБОРА ПЕРСОНАЛА"
  • Вакуумные приборы Наибольший ток, возможный при данной температуре катода, называют током насыщения. График (рис. 1.2) называют вольтамперной характеристикой диода.… Поэтому вольт- амперная характеристика диода начинается немного левее начала… Очевидно, что для увеличения тока насыщения необходимо увеличить число электронов, вылетающих за 1 с. из катода, т. е.…
  • Контрольно-измерительные приборы После того, как данный генератор ими был продемонстрирован в том же году на конференции Западного побережья, организованной Институтом… Диснею это нужно было для его музыкальной экстравагантной мультипликации под… Метод предусматривал использование трёх звуковых дорожек со сжатием амплитуды, для того чтобы они уместились на…
  • Гидравлический расчет трубопроводной сети. Подбор центробежного насоса Она показывает, что данный центробежный насос, работая на водопроводную сеть, развивает напор НН, создает подачу QH, затрачивая определенную… Исходные данные для РГР №2 Расчетный расход нефтепродукта: Q1 = 80+0,1.N.n,… Для этого необходимо определить число Рейнольдса (Re) и абсолютную эквивалентную шероховатость стенок трубопровода.