рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Неустойчивость тока в транзисторной структуре с контактом металл-полупроводник

Неустойчивость тока в транзисторной структуре с контактом металл-полупроводник - Дипломная Работа, раздел Высокие технологии, многослойный п/п прибор Неустойчивость Тока В Транзисторной Структуре С Контактом Металл-Полупроводни...

Неустойчивость тока в транзисторной структуре с контактом металл-полупроводник. В современной твердотельной электронике используются в ка- честве активных элементов два типа контактов - контакт металл-ди- электрик-полупроводник с толстым ( с непрозрачным для электоро- нов) слоем окисла, применяемый в МДП-транзисторах, и контакт ме- талл-полупроводник с барьером Шоттки - в качестве выпрямляющего устройства.

В диодах Шоттки между металлом и полупроводником тоже существует весьма тонкий (около 1,5 нм) слой окисла, прозрачный для электронов. Именно в такой структуре было впервые обнаружено явление поверхностно-барьерной неустойчивости тока (ПБНТ). Промежуточное положение между двумя вышеназванными типами контактов занимает контакт металл-туннельно прозрачный окисел - полупроводник (МТОП-контакт), толщина слоя окисла в котором сос- тавляет 2-3 нм. Именно благодаря контакту металл-туннельно проз- рачный окисел - полупроводник на кафедре полупроводников КубГУ был создан функциональный поверхностно-барьерный генератор - ТУН- НЕЛИСТОР [8]. На рисунке 13 изображена энергетитческая диаграмма генера- тора. Генератор состоит из транзисторной структуры с поверхност- но-барьерным переходом и с p-n-переходом.

Принцип действия заключается в следующем: вероятность тун- нельного перехода электрона с некоторого акцепторного поверхност- ного уровня, контролирующего высоту барьера определя- ется толщиной барьера на высоту этого уровня.

С ростом подаваемо- го на образец напряжения, толщина барьера на высоте акцепторного поверхностного уровня уменьшается, т.к. происходит более сильное искривление энергетической зоны в приповерхностной области, и при некотором значении и соответствующим ему значени- ем может наблюдаться значительная эмиссия электронов с поверхностных центров в зону проводимости полупроводника.

Если эффективное время туннельного перехода туннеля с уровня в зону проводимости полупроводника, больше, чем время захвата электронов на поверхностные уровни, то высота барьера остает- ся неизменной, через образец будет идти ток, обусловленный тун- нельной эмиссией. Неустойчивость тока в этом случае наблюдаться не должна.

Если же эффективное время туннельного перехода меньше времени захвата, т.е. процесс туннельной эмиссии с поверхностных центров преобладает над процессом захвата электронов на эти цент- ры, то барьер понизится /штриховая линия на рис. 14./ вследствие уменьшения отрицательного поверхностного заряда, а это, в свою очередь, вызовет более интенсивную эмиссию электронов из металла в полупроводник. Если образец включен в цепь генератора тока, то увеличение тока вызовет уменьшение поля в поверхностно-барьерном переходе.

Поверхностные состояния, возвращаясь к равновесию, вновь захватывают электроны, восстанавливая барьер. Поле в переходе возрастает до критического, и процесс повторяется. В образце воз- никает неустойчивость тока. Если уровни размыты в зону, то колебания будут наблю- даться в некотором интервале значений. Если же имеется диск- ретный ряд значений, то ему будет соответствовать дискретный ряд значений критических напряжений. Время спада релаксационного всплеска и сам процесс существо- вания колебаний существенно зависит от темпа рекомбинации, опре- деляемого избыточной концентрацией дырок и величиной, т.к. после эмиссии электронов из металлического контакта будут протекать два конкурирующих процесса: повторный захват электро- нов на поверхностные состояния и рекомбинация в приповерхностном слое. В случае же преобладания рекомбинации над захватом (при значительном увеличении ) ток скачком достигает максимального значения, и колебания срываются.

Описанная выше качественная модель справедлива ввиду наличия на поверхности полупроводника стабилизированного тренировкой слоя окисла, затрудняющего эмиссию электронов в полупроводник и захват их на быстрые состояния непосредственно из металла.

Экспериментально наблюдаемое влияние p-n-перехода на пара- метры колебаний можно объяснить следующим образом. При "оборван- ной" цепи Р-области перехода экстракции дырок из базы через по- верхностно-барьерный переход создает отрицательный градиент их концентрации вдоль всей базы, что нарушает равновесие дырочных потоков мужду n- и p-областями p-n-перехода и создает неуравнове- шанный поток достаточно "энергичных" дырок из p-области в базу. P-область заряжается отрицательно и высота потенциального барьера уменьшается (штрихпунктирная линия рис.13 ) Этому способствует и падение напряжения на распределенном сопротивлении базы. Поток дырок из p-области в базу возрастает.

Ввиду малой эффективности ПБП дырки аккумулируются вблизи поверхности.

В результате часть отрицательного заряда поверхностных состояний компенсируется не ионизированными донорами, а аккумулируемыми дырками, что приводит к уменьшению толщины барьера x, локальному усилению поля и сниже- нию критического напряжения возбуждения колебаний. При малых ве- личинах резистора R концентрация дырок в базе возрастает и коле- бания срываются. Таким образом, резистором устанавливается оп- тимальное для существования неустойчивости значения . 3. СЕМЕЙСТВА ВОЛЬТАМПЕРНЫХ ХАРАКТЕРИСТИК ПРИБОРОВ ТУННЕЛИСТОР и БИСПИН [9]. Для снятия вольтамперных характеристик (ВАХ) БИСПИНа и ТУН- НЕлИСТОРа был использован характериограф TR-4802. Для электродов БИСПИНа и ТУННЕЛИСТОРа, имеющих схожее функциональное назначение введены следующие буквенные обозначения: С- p-область, В- n-об- ласть (база), А- область - генерирующий контакт.

Там же обозначе- ны знаками: - ступенчатое изменение параметрического тока в положи- тельную сторону, - в отрицательную сторону, - положительное или - отрицательное напряжение развертки на электродах измерительного прибора. 3.1. Семейство вольтамперных характеристик прибо- ров включенных по схеме с общим В-электродом (базой) Представленные в этом разделе семейства ВАХ исследуемых при- боров получались при включении их по схеме с общим В-лектродом.

При этом на электроды А и С поочередно подавались напряжение раз- вертки и ступенчатый параметрический ток разной полярности. На рис.14 изображена блок-схема измерения (а), характерис- тики БИСПИНа (б) и ТУННЕЛИСТОРа (в) зависимости Iсв=F(Uсв) при -Iав=CONST и следующих режимах -БИСПИНа: Uсв=0,5 в/см, Iсв=0,5 мА/см, Rн=200 Ом, Iав=0,5 мА/ступ. Верхняя ВАХ соответствует Iав=3мА -ТУННЕЛИСТОРа: Uсв=0,5 В/см, Iсв=0,5 мА/см, Rн=1 кОм, Iав=0,5 мА/ступ. Верхняя ВАХ соответствует Iав=3 мА. Как видим из рисунка семейства ВАХ исследуемых приборов ка- чественно не отличаются и представляют собой характеристику p-n -перехода, сдвигаемую вверх вдоль оси токов под воздействием па- раметрического тока. Ток, текущий в обратном направлении через активную А-область приводит к возникновению неустойчивости тока в этой области /6/. Неустойчивость модулирует характеристики p-n-перехода БИСПИНа и ТУННЕЛИСТОРа. Необходимо отметить, что крутизна характеристик БИСПИНа при равных условиях больше крутиз- ны характеристик ТУННЕЛИСТОРа. При указанных режимах на ВАХ ТУН- НЕЛИСТОРа наблюдаются колебания (нечеткие характеристики). Неус- тойчивость на БИСПИНе при этой блок-схеме можно получить, изменив режим: Uсв=0,1В/см; Iсв=10 мкА/см; Rн=10 кОм; Iав=50-70 мкА, т.е. в микрорежиме, при величинах тока на порядок меньших, чем у ТУН- НЕЛИСТОРа. При включении исследуемых приборов по блок-схеме рис.15,а получим семейства ВАХ БИСПИНа (рис.15,б) и ТУННЕЛИСТОРа (рис.15,в) в виде зависимостей Iсв=F(Uсв) при Iав=CONST и режи- мах измерений -БИСПИНа: Uсв=0,5 В/см, Iсв=0,5 мА/см, Rн= 1 кОм, Iав=0,2 мА/ступ. - ТУННЕЛИСТОРа: Uсв=0,2 В/см; Iсв=0,2 мА/см; Rн= 1 кОм, Iав=0,2 мА/ступ. В отличие от предыдущей схемы включения, ВАХ обоих приборов, представляющие прямую ветвь p-n-перехода, при возрастании абсо- лютной величины параметрического тока сдвигаются в сторону оси отрицательных токов и положительных напряжений, что особенно наг- лядно видно на примере ВАХ БИСПИНа. Незначительное влияние пара- метрического тока на ВАХ ТУННЕЛИСТОРа объясняется очень малым сопротивлением А-области прямому току. Неустойчивости тока в обо- их приборах не возникают.

Рассмотренное включение приборов позво- ляет использовать их в стабилизаторах и регуляторах напряжения и тока, выпрямителях.

Поменяв одновременно полярности источника параметрического тока и источника напряжения в соответствии с блок-схемой измере- ний, изображенной на рис.16.а, получим ВАХ БИСПИНа (б) и ТУННЕ- ЛИСТОРа (в) в зависимости -Iсв=F(-Uсв) при -Iав=CONST. Режимы из- мерений -БИСПИНа: Uсв=-1 В/см; Iсв=50 мкА/см; Rн=5 кОм, Iав=0,05 мА/ступ. Правой ВАХ соответствует Iав=5 мА. -ТУННЕЛЛИСТОРа: Uсв= -2 В/см, Iсв=1 мА/см, Rн=5 кОм, Iав=2 мА/ступ. Правой ВАХ соответствует Iав=5 мА. Сдвиг характеристик в сторону отрицательных токов обусловлен запиранием p-n-перехода прикладываемым к нему обратным напряжени- ем Uсв. В обоих прииборах возникает неустойчивость тока, парамет- ры колебаний которой регулируются величиной параметрического тока через А-область.

Возможно использование приборов в качестве гене- раторов сигналов специальной формы.

Изменение направления параметрического тока в соответствии с блок-схемой измерений, изображенной на рис.17,а приводит к ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в), соответствущих зависимостей -Iав=F(-Uав) при Iсв=CONST, при следующих режимах измерений: -БИСПИНа: Uсв=-0,5 В/см; Iав=0,2 мА/см; Rн=1 кОм, Iсв=0,2 мА/ступ. Верхней ВАХ соответствует Iав=2 мА. -ТУННЕЛЛИСТОРа: Uсв= -0,5 В/см, Iав=0,1 мА/см, Rн=1кОм, Iсв=5 мА/ступ. Верхней ВАХ соответствует Iав=50 мА. Полученные характеристики представляют собой обратную ветвь p-n-перехода, смещенную вдоль оси токов под воздействием парамет- рического тока через А-область и похожи на выходные характеристи- ки транзистора в схеме с общей базой при инверсном включении.

Бо- лее сильное влияние параметрического тока на характеристики БИС- ПИНа объясняются большим прямым сопротивлением А-области.

Подключая А-область приборов к источнику напряжения, p-об- ласть (электрод С) - к генератору тока согласно блок схеме рис.18,а, получим ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в), соответс- твующих зависимости -Iав=F(-Uав) при Iсв=CONST, при следующих ре- жимах измерений - БИСПИНа: Uсв=-0,5 В/см; Iав=0,1 мА/см; Rн=2 кОм, Iсв=20 мкА/ступ. -ТУННЕЛЛИСТОРа: Uсв= -0,5 В/см, Iав=0,1 мА/см, Rн=5кОм, Iсв=50 мкА/ступ. Поскольку генератор параметрического тока подключен к p-n-переходу в прямом направлении, а источник напряжения разверт- ки к А-области в обратном, в приборах возникает неустойчивость тока. Наблюдаются N-образные характеристики А-области, сдвинутые вдоль оси токов. Управление параметрами неустойчивости тока можно осуществлять изменением напряжения Uав или тока Iсв. Данная схема включения обеспечивает устойчивую работу приборов в микрорежиме.

Приведенная на рис.19,а блок-схема включения позволяет по- лучить ВАХ (б) БИСПИНа (пунктирная) и ТУННЕЛИСТОРа (сплошная) со- ответствующие зависимости Iав=F(Uав) при Iсв=CONST. и режиму из- мерений: БИСПИНа и ТУННЕЛИСТОРа: Uав=1В/см; Iав=0,5 мА/см; Rн=500 Ом. При таком подключении получаем характеристику А-области (n-p-n структуры) БИСПИНа и характеристику контакта металл-тонкий окисел-полупроводник ТУННЕЛИСТОРа. При изменении величины Iсв ВАХ приборов практически не изменяются.

Неустойчивость тока не наблю- дается.

Такое подключение приборов может использоваться в схемах стабилизаторов напряжения, ограничителях, переключающих устройс- твах. Включение по блок-схеме, изображенной на рис.20,а, приводит к ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в), которые соответствуют зави- симости -I=F(-Uав) при -Iсв=CONST. снятым при следующих режимах измерения: -БИСПИНа: Uав= -2 В/см; Iав=1 мА/см; Rн=200 Ом, Iсв= 0,2 мА/ступ. Левая характеристика соответствует Iсв=1,0 мА. -ТУННЕЛЛИСТОРа: Uав= -2 В/см, Iав=1 мА/см, Rн=200 Ом, Iсв=0,2 мА/ступ. Левая характеристика cоответствует Iсв=1,0 мА. При рассматриваемых режимах работы приборов, на ВАХ наблюда- ются S-участки с ярко выраженной неустойчивостью тока. В БИСПИНе неустойчивость тока возникает при снижении Icв до 50 мкА/ступ. Приборы, включенные по данной блок-схеме могут быть исполь- зованы в качестве генератора сигнала специальной формы и управля- емых переключателей.

ВАХ зависимости Iав=F(Uав) при -Iсв=CONST снятые по блок-схеме рис.21,а, изображены на рис.21,б для БИСПИНа и на рис.21,в для ТУННЕЛИСТОРа. Режимы измерений: -БИСПИНа: Uав=1 В/см; Iав=0,5 мА/см; Rн=500 Ом, Iсв=20 мА/ступ. Левая характеристика соответствует Iсв=200 мА. -ТУННЕЛЛИСТОРа: Uав= 2 В/см, Iав=1 мА/см, Rн=50 Ом, Iсв=10 мкА/ступ. При такой схеме измерения А-область оказывается включенной в прямом направлении, а p-n переход будет заперт.

Это приводит к модуляции внутреннего сопротивления А-области параметрическим то- ком. Однако, необходимо отметить, что при изменении Iсв от 0 до 120 мА ВАХ меняется слабо, о чем свидетельствует яркая вертикаль- ная характеристика на семействе ВАХ (рис.21,б). При дальнейшем увеличении абсолютной величины параметрического тока, ВАХ сдвига- ются влево, в сторону уменьшения напряжения.

Крутизна ВАХ может изменяться в зависимости от величины сопротивления нагрузки.

ВАХ ТУННЕЛИСТОРа состоит из двух участков - нелинейного, со- ответствующего прямой ветви контакта металл- тонкий окисел-полуп- роводник, и линейного, относящегося к режиму полностью открытой А-области.

При возрастании параметрического тока точка перегиба ВАХ смещается вправо вверх.

Неустойчивость тока при этом не воз- никает. Таким образом, при включении исследуемых приборов по схеме с общим электродом В и при подаче на электрод А отрицательного нап- ряения, независимо от полярности подключения или рода источника, с которым соединен контакт С (p-область), в БИСПИНе и ТУННЕЛИСТО- Ре возникает неустойчивость тока, управление характеристиками ко- торой может осуществлятся величиной прикладываемого непосредс- твенно к контакту А напряжения или протекающего через него тока, а также величиной напряжения и тока во вторичной цепи приборов. 3.2 Семейства вольтамперных характеристик приборов вклыченных по схеме с общим А-электродом.

Приведенные ниже семейства ВАХ снимались по схеме с общим А-электродом и попеременно подаваемыми на В и С-электроды сигна- лами от генераторов тока и напряжения.

Зависимости Iса=F(Uса) при -Iва=CONST (рис.22б - БИСПИН, рис.22в - ТУННЕЛИСТОР) снимались по блок-схеме рис.22а и режи- мах на: -БИСПИНе: Uса=0,5 В/см; Iса=0,2 мА/см; Rн=2 кОм, Iва=1 мА/ступ. - ТУННЕЛЛИСТОРа: Uса=0,5 В/см, Iса=0,1 мА/см, Rн=5 кОм, Iва=0,5 мА/ступ. В рассматриваемом режиме на А-область приборов подается от- рицательный потенциал одновременно от генератора параметрического тока и источника напряжения развертки, p-n-переход оказывается включен в прямом направлении, А-область - в обратном.

ВАХ обоих приборов имеет S-участки с неустойчивостью тока. У БИСПИНа при уменьшении Rн неустойчивость тока исчезает. При увеличении Rн, например, до 5 кОм, неустойчивость не срывается при изменении Iва от 0,2 до 50 мА/ступ. При величинах параметрического тока равных 6-7 мА вертикальная линия, соответствующая участку ВАХ с устойчи- вым током, исчезает.

Регулировка порога возникновения неустойчи- вости тока в ТУННЕЛИСТОРе может осуществляться изменением пара- метрического тока. Такая схема включения позволяет использовать приборы в качестве генераторов сигналов специальной формы и пе- реключателей. На рис.23,а, изображена блок-схема снятия семейств ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в) в соответствии с зависимостью Iса=F(Uса) при Iва=CONST. и режимах измерений: -БИСПИНа: Uса=0,5 В/см; Iса=0,2 мА/см; Rн=2 кОм, Iва=0,2 мА/ступ. Верхняя характеристика соответствует Iва=1,4 мА. -ТУННЕЛЛИСТОРа: Uса=1 В/см, Iса=1 мА/см, Rн=1 кОм, Iва=1 мА/ступ. Верхняя характеристика соответствует Iва=9 мА. ВАХ обоих приборов определяются прямым параметрическим током Iва относительно А - области, открывающим ее, а также прямым то- ком Iса через p-n-переход.

Неустойчивость тока в этом случае не наблюдается. При увеличении параметрического тока Iва хаактерис- тики смещаются в сторону увеличения токов и одновременно все больше смещаются пологой частью ВАХ в сторону отрицательных нап- ряжений Uса. Причем, БИСПИН более чувствителен к изменению пара- метрического тока Iва и напряжения Uса, чем ТУННЕЛИСТОР. По блок-схеме рис.24,а, сняты семейства ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в) , т.е. зависимости - Iса=F(-Uса) при -Iва=CONST. Режимы измерений -БИСПИНа: Uса= -2 В/см; Iса=50 мкА/см; Rн=500 Ом, Iва=2 мА/ступ. -ТУННЕЛЛИСТОРа: Uса= -2 В/см, Iса=10 мкА/см, Rн=2 кОм, Iва=2 мА/ступ. Формирование ВАХ приборов обусловлено тем, что для тока функцио- нальной зависимости Iса p-n-переход закрыт, а величина сопротив- ления закрытой А-области будет зависеть от величины обратного-за- пирающего - параметрического тока Iва. Поскольку у БИСПИНа струк- тура А-области многослойна (n-p-n), то форма ВАХ определяется, в основном, этой областью.

Форма ВАХ ТУННЕЛИСТОРа в большей степени определяется величиной сопротивления p-n-перехода и незначительно зависит от сопротивления А-области.

Неустойчивость тока не наблю- дается. Изображенная на рис.25,а, блок-схема измерений позволяет получить ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в) в соответствии с за- висимостью -Iса=F(-Uса) при Iва=CONST. на следующих режимах изме- рений: -БИСПИНа: Uса= -1 В/см; Iса=20 мкА/см; Rн=2 кОм, Iва=20 мА/ступ. Изогнутой характеристике соответствует Iва=60 мА, левая вертикальная ВАХ - Iва=80 мА. -ТУННЕЛЛИСТОРа: Uса= -1 В/см, Iса=50 мкА/см, Rн=2 кОм, Iва=2 мА/ступ. Верхняя ВАХ соответствует Iва=18 мА. Семейства ВАХ исследуемых приборов по этой схеме включения определяются токами Iва и Iса c преобладающим влиянием последне- го, поскольку он протекает через закрытый p-n переход, а парамет- рический ток Iва течет в прямом направлении относительно контакта А-области.

У БИСПИНа при достижении параметрическим током величи- ны Iва=60 мА наблюдаются характеристика последовательно включен- ных p-n-перехода и структуры А-области.

При дальнейшем повышении напряжения до 6 В происходит электрический пробой А-области.

У ТУННЕЛИСТОРа наблюдается семейство смещенных вдоль оси токов и напряжений ВАХ p-n перехода. Неустойчивость тока не наблюдается. Проанализируем полученные при включении по блок-схеме рис.26,а ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в) зависимости -Iва=F(Uва) при Iса=CONST. и режимах измерений: -БИСПИНа: Uва=0,5 В/см; Iва=0,2 мА/см; Rн=1 кОм, Iса=50 мкА/ступ. Верхняя характеристика соответствует Iса=0,4 мА. -ТУННЕЛЛИСТОРа: Uва= 1 В/см, Iва=50 мкА/см, Rн=2 кОм, Iса=50 мкА/ступ. Верхняя характеристика соответствует Iса=200 мкА. На семействах ВАХ обоих исследуемых приборов наблюдаются участки N-типа что, особенно четко видно на первой характеристике ТУННЕЛИСТОРа, работающего в микрорежиме.

Начиная с некоторого значения параметрического тока на ВАХ возникают участки неустой- чивости тока, которые более интенсивно проявляются у БИСПИНа. Уп- равление неустойчивостью тока может осуществляться как величиной параметрического тока Iса, так и напряжением Uва. ВАХ, полученные при данном включении, по форме напоминают ВАХ исследуемых прибо- ров изображенные на рис.18. Это обусловлено тем, что направления соответствующих токов для обеих схем включения совпадают.

Незна- чительная разница ВАХ определена взаимодействием параметрического тока с сопротивлением А-области при рассматриваемом включении. Рассмотрим ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в), полученные по блок-схеме рис.27,а, зависимости Iва=F(-Uва) при Iса=CONST, снятые при следующих режимах измерений: -БИСПИНа: Uва=-0,2 В/см; Iва=0,2 мА/см; Rн=1 кОм, Iса=0,2 мА/ступ. -ТУННЕЛЛИСТОРа: Uва= -1 В/см, Iва=0,2 мА/см, Rн=2 кОм, Iса=0,2 мА/ступ. У обоих семейств верхняя характеристика соответс- твует Iса=1,6 мА. Семейства ВАХ приборов по приведенной схеме включения похожи на выходные коллекторные характеристики транзистора, включенного по схеме с ОЭ. По блок-схеме измерений рис.28,а получены семейства ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в) зависимости -Iва=F(Uва) при -Iса=CONST. Режимы измерений: -БИСПИНа: Uва=5 В/см; Iва=0,1 мА/см; Rн=5 кОм, Iса=1 мА/ступ. Левая характеристика соответсвует Iса=10 мА. -ТУННЕЛЛИСТОРа: Uва= 2 В/см, Iва=0,1 мА/см, Rн=5 кОм, Iса=5 мА/ступ. Из ВАХ БИСПИНа следует, что пробой А-области наступает при Uва около 25 В. При возрастании тока Iса пробой наступает раньше.

ВАХ ТУННЕЛИСТОРа представляет собой обратную ветвь контакта по- лупроводник- диэлектрик (окисел)-металл.

Однако, из-за малой тол- щины окисла при напряжениях более 0,5 В характеристика контакта близка к характеристике омического контакта.

Неустойчивость тока не наблюдается. На рис.29,а, представлена блок-схема снятия ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в) зависимости Iва=F(-Uва) при -Iса=CONST. Режимы измерений: -БИСПИНа: Uва=-1 В/см; Iва=0,5 мА/см; Rн=2 кОм, Iса=1 мА/ступ. Левая характеристика снята при Iса=5 мА/ступ. -ТУННЕЛЛИСТОРа: Uва= -2 В/см, Iва=2 мА/см, Rн=1 кОм, Iса=5 мА/ступ. Левая характеристика соответствует Iса=35 мА ВАХ обоих приборов качественно практически не отличаются. Незначительное количественное отличие обусловлено большими на- чальными токами ТУННЕЛИСТОРа. При увеличении Iса по абсолютной величине характеристики отклоняются влево.

Неустойчивость тока не возникает. Таким образом, при включении исследуемых приборов по схеме с общей А-областью неустойчивость тока возникает только в том слу- чае, когда А-область подключена одновременно к отрицательным по- люсам генератора параметрического тока и источника напряжения развертки. Причем безразлично, куда были подключены плюсовые клеммы этих источников - к В- или С-электродам. 3.3. Семейства вольтамперных характеристик прибо- ров включенных по схеме с общим С-электродом.

Приведенные в этом разделе семейства ВАХ получались при включении исследуемых приборов по схеме с общей p-областью (электрод С) и попеременно подключаемыми А- и В-электродами к ге- нераторам параметрического тока и напряжения развертки разной по- лярности. Если "плюс" генератора напряжения соединить с В-электродом (n-область), а "минус" генератора параметрического тока с элект- родом А (активной областью) относительно общего С-электрода в со- ответствии с блок-схемой рис.30,а, то получим зависимость -Iвс=F(Uвс) при -Iас=CONST. и соответствующие ей ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в), снятые при следующих режимах измерений: -БИСПИНа: Uвс=2 В/см; Iвс=0,5 мА/см; Rн=100 Ом, Iас=0,5 мА/ступ. Верхняя ВАХ соответствует Iас=5 мА. -ТУННЕЛЛИСТОРа: Uвс=0,2 В/см, Iвс=50 мкА/см, Rн=500 Ом, Iас=50 мкА/ступ. Верхняя ВАХ соответствует Iса=500 мкА. ВАХ представляют собой сдвинутые вдоль оси токов обратные ветви характеристик p-n-перехода, сопротивление которого модули- руется отпирающим (прямым относительно p-области ) током, проте- кающим через В- и А-области. Относительно А-области параметри- ческий ток является обратным и, следовательно, вызывает в А-об- ласти неустойчивость тока. При увеличении Rн и снижении токов че- рез БИСПИН можно получить неустойчивость на всем семействе харак- теристик.

Управление неустойчивостью тока у ТУННЕЛИСТОРа, работа- ющего в микрорежиме, осуществляется величинами Rн и параметричес- кого тока. Начала ВАХ ТУННЕЛИСТОРа сдвинуты в отрицательную сто- рону оси напряжений. На ВАХ обоих приборов неустойчивость тока наблюдается на участках характеристик N-типа. Изменив направление параметрического тока, подаваемого на электрод А, получим блок-схему измерений (рис.31,а,), позволяю- щую снять ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в) зависимости -Iвс=F(Uвс) при Iас=CONST, что соответствует режимам иэмерений: -БИСПИНа: Uвс=0,2 В/см; Iвс=20 мкА/см; Rн=500 Ом, Iас=2 мА/ступ. -ТУННЕЛЛИСТОРа: Uвс= 2 В/см, Iвс=50 мкА/см, Rн=500 Ом, Iса=5 мА/ступ. В рассматриваемом случае параметрический ток является прямым для А-области и обратным (запирающим) для p-n-перехода, поэтому влияние его на общую характеристику p-n-перехода будет зависеть от соотношения, создаваемого им на p-n-переходе падения напряже- ния и прикладываемого напряжения развертки.

Очевидно, что это бу- дут ветви пробоя p-n-перехода, сдвигающиеся вправо, в область по- ложительных напряжений.

У БИСПИНа пробой p-n-перехода наступает при напряжении 35-40 В, которое практически не зависит от пара- метрического тока (изменяется только величина обратного тока че- рез p-n-переход). У ТУННЕЛИСТОРа пробой p-n-перехода наступает с напряжения около 2 В и величина напряжения пробоя возрастает по мере увеличения параметрического тока. Наклон ВАХ существенно за- висит от величины сопротивления нагрузки.

ВАХ БИСПИНа в микрорежиме (рис.32,б) и совместные ВАХ БИС- ПИНа (правая) и ТУННЕЛИСТОРа (рис.32,в) зависимости Iвс=F(-Uвс) при Iас=CONST. получены по блок-схеме измерений, изображенной на рис.32,а и следующих режимах измерений: -БИСПИНа: Uвс= -0,1 В/см; Iвс=50 мкА/см; Rн=1 кОм, Iас=10 мкА/ступ. -БИСПИНа и ТУННЕЛЛИСТОРа: Uвс= -0,1 В/см, Iвс=50 мкА/см, Rн=1 кОм Очевидно, что ВАХ представляет собой прямые ветви p-n-пере- хода между В- и С-областями, промодулированные обратным током А-области, на которой в этом случае должна возникать неустойчи- вость тока. Это и наблюдается на ВАХ БИСПИНа при величинах пара- метрического тока 50-100 мкА. Дальнейшее увеличение параметричес- кого тока через БИСПИН приводит к ВАХ, изображенным на рис.16,б На ТУННЕЛИСТОРе неустойчивость тока при такой схеме включения и имеющихся режимах работы характериоскопа получить не удалось.

Оба исследуемых прибора при такой схеме подключения работают в микро- режиме. Рассмотрим результаты измерений по блок-схеме, изображенной на рис.33,а, позволяющей получить ВАХ БИСПИНа (б) и ТУННЕЛИСТО- Ра (в) в соответствии с зависимостью Iвс=F(-Uвс) при Iас=CONST и режимах работы: -БИСПИНа: Uвс= -0,1 В/см; Iвс=0,2 мА/см; Rн=1 кОм, Iас=20 мА/ступ. -ТУННЕЛЛИСТОРа: Uвс=0,1 В/см, Iвс=0,2 мА/см, Rн=1 кОм, Iса=0,2 мА/ступ. ВАХ p-n-переходов под воздействием запирающего параметричес- кого тока, смещаются вдоль оси токов.

ВАХ БИСПИНа смещается в сторону положительных напряжений.

Неустойчивость тока не возника- ет. Оставив включенными исследуемые приборы по схеме с общим электродом С (p-областью), подсоединим теперь электрод В (n-об- ласть) к генератору параметрического тока, а электрод А к источ- нику напряжения функциональной развертки и снимем ВАХ по блок-схеме рис.34,а. Получим для БИСПИНа (б) и ТУННЕЛИСТОРа (в) характеристики зависимости Iас=F(Uас) при Iвс=CONST, которые со- ответствуют режимам измерений: -БИСПИНа: Uас=2 В/см; Iас=0,5 мА/см; Rн=2 кОм, Iвс=5 мкА/ступ. Верхняя характеристика соответствует Iвс=35 мкА. - ТУННЕЛЛИСТОРа: Uас=0,5 В/см, Iас=0,1 мА/см, Rн=2 кОм, Iса=0,1 мА/ступ. Верхняя характеристика соответствует Iвс=0.7 мА. ВАХ приборов снятые по данной блок-схеме, будут являться ре- зультатом взаимодействия прямого для А-области и обратного для p-n-перехода тока Iас с параметрическим током Iвс, проходящим че- рез p-n-переход в прямом направлении. Очевидно, что для ТУННЕЛИС- ТОРа работающего в микрорежиме и имеющего малое прямое сопротив- ление А-области в прямом направлении, вид семейства вольт-ампер- ных характеристик будет определяться величиной сопротивления p-n-перехода.

У БИСПИНа, при запертом p-n-переходе, ВАХ принимают вид наклонных кривых и повторяют обратную ветвь диода.

При увели- чении тока Iвс, то есть при открывании p-n-перехода, наклонные линии семейства ВАХ переходят в практически вертикальную характе- ристику, которая теперь обусловлена прямой ветвью А-области (рис.34,б,). Неустойчивости тока не возникает.

Изменив полярность генератора тока, как указано на блок-схе- ме рис.35,а, Получим ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в), соот- ветствующие зависимости Iас=F(Uас) при -Iвс=CONST и следующих ре- жимах измерений: - БИСПИНа: Uас=2 В/см; Iас=0,5 мА/см; Rн=1 кОм, Iвс=20 мкА/ступ. Левая характеристика соответствует Iвс=100 мкА. -ТУННЕЛЛИСТОРа: Uас= 1 В/см, Iас=0,5 мА/см, Rн=1 кОм, Iвс=5 мА/ступ. В отличие от предыдущего случая форма ВАХ зависит от влияния на p-n-переход источника параметрического тока, подключенного к переходу обратной полярностью. По мере запирания p-n перехода ха- рактеристика А-области БИСПИНа будет сдвигаться вдоль оси напря- жений влево, а обратная ветвь ВАХ p-n-перехода ТУННЕЛИСТОРа - вправо.

Рассмотрим снятые по блок-схеме на рис.36,а, ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в), представляющие зависимость -Iас=F(-Uас) при Iвс=CONST и следующих режимах измерений: - БИСПИНа: Uас= -0,2 В/см; Iас=20 мкА/см; Rн=5 кОм, Iвс=5 мкА/ступ. -ТУННЕЛЛИСТОРа: Uас= -0,5 В/см, Iас=0,1 мА/см, Rн=5 кОм, Iвс=1 мА/ступ. Генератор параметрического тока в этом случае подключен к p-n-переходу в прямом направлении, а источник напряжения разверт- ки - в прямом, по отношению к p-n-переходу и в обратном, по отно- шению к А-области, что должно привести к возникновению неустойчи- вости тока. Неустойчивость тока действительно наблюдается на ВАХ ТУННЕЛИСТОРа. На БИСПИНе, работающем в микрорежиме, при такой схеме включения и имеющихся режимах работы характериоскопа неус- тойчивости тока получить не удалось.

На ВАХ обоих исследуемых приборов отчетливо наблюдаются S-участки.

Изменив полярность генератора тока, получим зависимость - Iас=F(-Uас) при -Iвс=CONST и проанализируем снятые по блок-схеме рис.37,а, ВАХ БИСПИНа (б) и ТУННЕЛИСТОРа (в), измеренные при следующих режимах: -БИСПИНа: Uас=-5 В/см; Iас=1 мА/см; Rн=5 кОм, Iвс=5 мА/ступ. -ТУННЕЛЛИСТОРа: Uас= -2 В/см, Iас=0,5 мА/см, Rн=2 кОм, Iвс=0,5 мА/ступ. На ВАХ обоих приборов наблюдается неустойчивость тока. Ин- тенсивность колебаний в широком пределе управляется величиной то- ка параметрического генератора, включенного в n-область (электрод В) и ЭДС источника напряжения.

На ВАХ имеются S-участки.

Таким образом, при включении исследуемых приборов по схеме с общей p-областью (электрод С) неустойчивость тока возникает в тех слу- чаях, когда активная А-область подключается к "минусу" источника тока или напряжения независимо от того, к какому полюсу соответс- твенно источника напряжения или тока будет подключена n-область (электрод В). Д О К Л А Д Как известно полупроводниковые приборы имеют очень широкое распространение.

Важное значение для применения и разработки новых приборов имеет исследование их характеристик и параметров.

Если бы о параметрах и характеристиках полупроводниковых приборов знало больше специалистов и новые приборы изучались на студенческой скамье, то рациональное использование приборов было бы более успешным. Зная специфику работы полупроводников, их параметры и характеристики, можно проанализировать дальнейшую судьбу изобретения, возможности и недостатки, возможную прибыль от применения и производства нового прибора.

Однако для исследования параметов и характеристик полупроводников промышленностью выпускается не значительное количество очень дорогих измерительных приборов. Цель дипломной работы - на основе модернизированного зарубежного характериографа TR 4802 поставить лабораторную работу исследовательского характера, для практикума по физике полупроводниковых приборов по исследованию вольтамперных характеристик не только ставших широко известных полупроводниковых приборов диодов и транзисторов, но и абсолютно новых приборов разработанных и исследуемых на кафедре ТУННЕЛИСТОР и БИСПИН, а также разработать методику выполнения лабораторной работы.

Наиболее универсальным среди приборов измеряющих параметры и харктеристики полупроводников являются характериографы. На кафедре имеются такие приборы, как отечественного, так и зарубежного производства.

Характериограф TR-4802 из-за физической изношенности и конструктивных недостатков долгое время не использовался в научно-исследовательской работе. Для постановки лабораторной работы этот прибор наиболее подходит по своим техническим параметрам. Был произведен ремонт и модернизация прибора. В питающих цепях прибора применены современные интегральные стабилизаторы напряжения КР142ЕН12 и LM337T имеющие защиту от короткого замыкания и перегрева. Были заменены подстроечные резисторы т.к. они вносили значительный вклад в неустойчивость работы прибора.

Улучшены тепловые режимы выпрямительных диодов и стабилитронов. Разработанная методика выполнения лабораторной работы строится по принципу "от простого к сложному" . Сначала студенты изучают теорию диодов и транзисторов, теоретические основы работы ТУННЕЛИСТОРа и БИСПИНа, затем учащиеся знакомятся с работой характериографа по настоящей инстукции, с техникой бесопасности и порядком ведения измерений. Следующим этапом - выполняя последовательно требования лабораторной работы студенты одновременно учатся практически работать с прибором и снимать вольтамперные характеристики полупроводниковых приборов.

Для осуществления принципа "от простого к сложному" студент должен последовательно получить вольт-амперные характеристики резисторов, диодов, транзисторов, ТУННЕЛИСТОРов или БИСПИНов. С каждым последующим шагом в изучении учащемуся дается все больше свободы в выборе режима исследований. При исследовании ТУННЕЛИСТОРов и БИСПИНов выполняющий задание может выбрать любой из 24 режимов включения приборов и исследовать полученные характеристики.

В заключении даются контрольные вопросы для более глубокого ознакомления с изученным предметом. Л И Т Е Р А Т У Р А 1. А.с. 281651 СССР МПК Н 01 5/00. Полупроводниковый генератор/ Б.С.Муравский. В.И.Кузнецов. Заявл. 03.12.68 Опублик. 21.03.73. Бюл. N7. 2. Кнаб О.Д. БИСПИН - новый тип полупроводниковых приборов// Электронная промышленность. 1989. N8. с.3-8. 3. Шалимова К.В. "Физика полупроводников" Изд. "Энергия" 1976. 4. Степаненко И.П. Основы теории транзисторов и транзисторных схем./Москва, Энергия, 1973. 5. Муравский Б.С. Черный В.Н. Яманов И.Л. Потапов А.Н. Жужа М.А. Неравновесные электронные процессы в транзисторных структурах с туннельно-прозрачным окислом //Микроэлектроника. 1989. т.18 N4. с.304-309. 6. Муравский Б.С. Кузнецов В.И. Фризен Г.И. Черный В.Н. Исследование кинетики поверхностно-барьерной неустойчивости тока.// Физика и техника полупроводников. 1972. т.6. N11. с.2114-2122. 7. Стриха В.И. Теоретические основы контакта металл-полупроводник.// Киев. "Наукова думка", 1974. 8. А.с. 1438537 СССР, МКИ Н01L 29/42 Поверхностно-барьерный генератор/ Б.С.Муравский, А.Н.Потапов, И.Л.Яманов.

Заявл. 30.12.86. 9. Муравский Б.С. Черный В.Н. Отчет о научно-исследовательской работе по теме: "Сравнительный анализ работы приборов биспин и туннелистор. / КубГУ. Краснодар. 1989. 10. TR-4802. Характериограф для испытания полупроводников. Техническое описание и инструкция по эксплуатации. 11. Бессарабов Б.Ф Федюк В.Д Федюк Д.В Диоды, тиристоры, транзисторы и микросхемы широкого применения.

Справочник. / Воронеж.

ИПФ "Воронеж" 1994. З А К Л Ю Ч Е Н И Е В результате проделанной работы: 1. Изучена

– Конец работы –

Эта тема принадлежит разделу:

многослойный п/п прибор

Цель дипломной работы состояла в постановке лабораторной работы исследовательского характера для практикума по физике полупроводниковых приборов по… В В Е Д Е Н И Е Современные условия жизни требуют от студентов хорошую… Студент умеющий работать со сложными приборами и установками, самостоятельно изучать научную литературу и делать…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Неустойчивость тока в транзисторной структуре с контактом металл-полупроводник

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Идеальный контакт металл-полупроводник
Идеальный контакт металл-полупроводник. Пусть имеются образцы металла и полупроводника n - типа с плоскими поверхностями. При этом уровень Ферми в полупроводни- ке может лежать как выше, так

Реальный контакт металл-полупроводник
Реальный контакт металл-полупроводник. Все вышеприведенные рассуждения справедливы для случая, ког- да поверхностные концентрации носителей заряда в полупроводнике не отличаются от объемных.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги