Давление как фактор интенсификации газообразных процессов

Давление как фактор интенсификации газообразных процессов. Для процессов, протекающих в газовой фазе, применение повышенного давления иногда целесообразно по той причине, что при сжатии газов они занимают меньший объём, в результате чего возрастает их концентрация. Скорость же химической реакции пропорциональна концентрации реагентов.

Из этого следует, например, что превращение азотоводородной смеси в аммиак либо оксида углерода и водорода в метанол может быть ускорено увлечением концентрации исходных газов компонентов за счет высокого давления. Для гомогенных газовых реакций, протекающих в состоянии, далеком от равновесия, их скорость оказывается пропорциональной фактическому давлению. Но так как с ростом давления может меняться порядок реакции и уменьшаться константа ее скорости, то в каждом конкретном случае необходима оптимизация условий её протекания.

Это особенно относится к производству крупнотоннажных продуктов (аммиаку, метанолу, карбамиду и др.). Гомогенные газовые реакции, как известно, могут сопровождаться уменьшением или увеличением объёме. Например, в производстве аммиака из азотоводородной смеси по схеме N2 +3N2 → 2NH 3 + Q из 1+3 моль исходного вещества получают 2 моль конечного продукта. Здесь процесс идет с уменьшением объёма ( 4 моль→2 моль). В таких реакциях выход продукта и скорость его образования увеличиваются с повышением давления вначале очень быстро, а затем всё медленнее и медленнее.

Это объясняется тем, что в результате сжатия происходит своеобразное <<сгущение>>, т. е. концентрирование газа, сдвиг равновесия в сторону конечного продукта при одновременном накоплении балласта в виде нежелательных инертных примесей. В результате этого повышение давления оказывается эффективным лишь до некоторого предела, после которого сжатие становится невыгодным, так как газ, оказавшийся под высоким давлением, приобретает все меньшую и меньшую сжимаемость.

В результате энергозатраты начинают возрастать быстрее прироста продукта экономически рациональное давление определяется технико-экономическими исследованиями и обычно колеблются от десятка до нескольких сотен МПа. В производстве аммиака выбор давления обусловливается его содержанием в равновесной смеси, энергетическими затратами на сжатие газа, временем и температурой контактирования на катализаторе, требованиями к аппаратному оформлению и т.д. влияние некоторых из этих факторов отражено в таблице.

Давление, МПа Расход энергии на сжатие газа, кВт • ч Объемное содержание аммиака в равновесной смеси 200 &#186;С 400 &#186;С 600 &#186;С 10 30 100 607 723 976 80,6 89,94 98,29 25,12 47,0 79,82 4,52 13,77 31,43 Из таблицы видно, что низкие температуры и высокие давления смещают равновесие в сторону образования аммиака и увеличения его выхода.

Содержание аммиака в равновесной смеси указывает на целесообразность проведения процесса при высоком давлении. В этом случае в результате конденсации аммиака облегчается его отделение от непрореагировавшей азотоводородной смеси. Однако значительно увеличивается расход энергии на её сжатие, ужесточаются требования к качеству и надежности оборудования. При понижении же давления упрощается аппаратурное оформление процесса, хотя габариты аппаратов растут.

Одновременно снижается расход энергии на сжатие, но увеличиваются энергозатраты на циркуляцию газа и выделения аммиака; повышаются требования к чистоте исходной азотоводородной смеси. Оптимизацией технико-экономических показателей процесса было выявлено, что наивыгоднейшее значение давления равно 32 МПа. Поиск оптимального давления несколько упрощается в случае обратимых газовых реакций, протекающих с увеличением объема. Примером такой реакции может быть конверсия водяным паром для получения водорода: СН4 + Н2О&#8594; СО2 + 4Н2 - Q газ пар газ газ в этой реакции число молей конечных продуктов ( 1 + 4 = 5) больше числа молей исходных реагентов (1 + 1 = 2), что указывает на ее протекание с увеличением объема.

Рассмотренные газовые реакции часто завершаются переходом газового компонента в жидкую или твердую фазу в результате его конденсации либо улавливания твердым или жидким поглотителем. Скорость процессов адсорбции, растворения, абсорбции и конденсации газового компонента всегда пропорциональна давлению, под которым этот компонент находится.

Поэтому в промышленности для ускорения перехода газа в другое агрегатное состояние часто применяют давление выше атмосферного. Так, в холодильных установках сжижение аммиака при плюсовых температурах достигается использованием давления 1,5 – 5 МПа. Обеззараживание воды хлором и насыщение её кислородом также форсируются применением избыточного давления. И наоборот, для перевода компонентов в газообразное состояние после их поглощения жидкостью или твердым телом, а также для ускорения этих процессов применяют вакуум.

Удаление газов и паров из различных материалов при низкой температуре в вакууме позволяет получить особо чистые химические вещества, электротехнические и полупроводниковые материалы, фармацевтические препараты, а также очень чистые от адсорбированных газов поверхности. На такие поверхности напыляются тонкие пленки в производстве микроминиатюрных радиоэлектронных изделий.

В металлургии с помощью вакуума из жидкого металла удаляются растворенные в нем газы (О2, N2, Н2), неметаллические включения, летучие – олово, висмут, сурьму, свинец. Одновременно с этим вакуум повышает плотность слитков. В строительстве вакуумирование провибрированного бетона увеличивает его прочность у поверхности на 20 – 40% повышает морозостойкость и износостойкость за счет снижения водоцементного отношения. Это экономит время бетонирования, так как дает возможность использовать покрытие вскоре после его вакуумной обработки. 3.