Железоуглеродистых сплавов

При смешении железа и углерода образуются следующие фазы:

- жидкий и твердые растворы углерода в железе, а также такие твердые фазы как, химическое соединение карбид железа Fe3C и графит.

Возможно образование двух граничных твердых растворов углерода в полиморфных модификациях железа.

Твердый раствор углерода в a-Fe представляет собой раствор внедрения, т.е. атомы углерода занимают некоторую часть октаэдрических пустот в ОЦК кристаллической решетке a-Fe. Твердый раствор углерода в a-железе называется феррит. Содержание углерода в низкотемпературном феррите весьма небольшое при 20°С <0,02%, поэтому прочностные характеристики феррита невысоки: твердость – 80…100 НВ, sв = 300МПа. Но феррит обладает достаточно высокой пластичностью d = 40%, y = 70%. В тоже время неравновесный пересыщенный a-твердый раствор – мартенсит, получаемый закалкой высокотемпературной фазы, может содержать углерода до 2,14%, соответственно, твердость мартенсита много выше чем у феррита. В зависимости от содержания углерода твердость мартенсита может повышаться более 600 НВ.

Равновесный феррит может присутствовать в структуре железоуглеродистых сплавов при температурах ниже 911 °С. Но выше 1392 °С также возможно образование твердого раствора углерода в ОЦК железе Он называется d- твердым раствором или высокотемпературным d-ферритом.

Граничный g-твердый раствор углерода в ГЦК железе тоже относится к твердым растворам внедрения, но параметр решетки у ГЦК железа больше чем у a-Fe, больше и размеры октаэдрических пустот, в которых размещаются растворенные атомы углерода, соответственно, растворимость углерода в g-Fe выше, до 2,14% масс. Твердый раствор углерода в g-Fe называется аустенит. Аустенит пластичен, но прочнее феррита, его твердость 100-200НВ.

Кроме граничных твердых растворов в метастабильной системе Fe-F3C присутствует промежуточная фаза - карбид железа F3C, которая называется цементит. Кристаллическая решетка цементита ромбическая со сложной элементарной ячейкой на 15 атомов, связанных между собой преимущественно ковалентными связями, Поэтому твердость цементита очень высока от 1000-2000НВ. Направленность ковалентных связей предопределяет высокую хрупкость цементита. Содержание углерода в цементите может изменяться, но не превышает стехиометрической концентрации 6,69%, т.е. цементит может быть представлен как твердый раствор вычитания. В кристаллической решетке цементита позиции (узлы), которые должны быть заняты углеродом, могут быть вакантными, соответственно, концентрация углерода в цементите в этом случае будет меньше стехиометрической. Температуру плавления цементита определить трудно из-за его распада при нагреве. Используя лазерный нагрев удалость оценить Тпл цементита в 1260 °С.

В обеих системах стабильной и метастабильной реализуются перитектическое, эвтектическое и эвтектоидное нонвариантные превращения.

Перитектическое превращение происходит в сплавах с содержанием углерода от 0,1% до 0,51% при температуре 1499 °С и состоит в том, что ранее образовавшиеся кристаллы d-феррита состава точки Н взаимодействуют с жидкой фазой состава точки. В с образованием новой фазы - g-твердого раствора.

В соответствии с правилом фаз Гиббса перитектическое превращение относится к нонвариантным реакциям:

C = k – f + 1, или 2 – 3 + 1 = 0, т.е. перитектическое превращение идет при постоянной температуре и неизменном составе фаз.

Например: превращения в сплаве I с перитектикой

В сплавах V, VI и VII происходит эвтектическое превращение: при температуре 1147°С в метастабильной и при 1154°С в стабильной системе жидкость состава точки С или, соответственно, С’ превращается в эвтектическую смесь кристаллов двух твердых фаз – аустенита (g-тв. раствора) и цементита (Fe3C). Такая смесь называется ледебурит. В стабильной системе из жидкости образуется аустенито-графитная эвтектика.

Эвтектическое превращение тоже идет при постоянной температуре и неизменном составе каждой фазы.

Железоуглеродистые сплавы, претерпевающие эвтектическое превращение называются чугунами. В бинарных системах Fe-Fe3C и Fe-C к чугунам относятся сплавы с содержанием углерода более 2,14 % (2,04%).

Сплавы с содержанием углерода менее 2,14 % (2,04%), не претерпевающие эвтектического превращения называются сталями.

И в чугунах, и в сталях происходит нонвариантное твердофазное эвтектоидное превращение при 727(738) °С. В метастабильной системе при эвтектоидном превращении g-твердый раствор (аустенит) состава точки S распадается с образованием эвтектоидной смеси дисперсных кристаллов a-твердого раствора (феррита) и цементита (Fe3C). Такая эвтектоидная смесь называется перлит. В стабильной системе аустенит состава точки S’ превращается в кристаллы феррита и графит, причем графит кристаллизуется на уже имеющихся включениях эвтектического графита, и графитсодержащая эвтектоидная смесь не образуется.

Железоуглеродистые сплавы.

Стали разделяют на доэвтектоидные, например сталь II, эвтектоидную сталь III и заэвтектоидные, например сталь IV.

Равновесная структура доэвтектоидной стали состоит из структурно свободного феррита, который выделился из аустенита до эвтектоидного превращения, и перлита. Структура эвтектоидной стали чисто перлитная, а заэвтектоидная сталь наряду с перлитом содержит избыточный цементит, который тоже выделился из аустенита прежде, чем началось эвтектоидное превращение. Предварительное выделение избыточных фаз феррита и цементита доводит аустенит до эвтектоидного состава - 0,7 (0,8) %С, который при температуре 727 (738)°С способен превратиться в перлит.

Реально все фазовые превращения идут с переохлаждением ниже равновесной температуры. Образующаяся при этом квазиэвтектоидная смесь имеет разную дисперсность кристаллов феррита и цементита и может содержать углерода как больше, так и меньше равновесного. Дисперсность перлита повышается с увеличением степени переохлаждения.

Эвтектоидная феррито-цементитная смесь повышенной дисперсности называется сорбит, а эвтектоид еще большей дисперсности носит название – троостит. С увеличением степени дисперсности перлита повышается твердость и прочность железоуглеродистых сплавов. С увеличением в структуре доэвтектоидной стали доли феррита снижается как твердость, так и прочность материала. Появление в структуре заэвтектоидной стали цементита увеличивает её твердость, а прочность повышается только в том случае, если цементит имеет форму изолированных мелких включений. Особенно неблагоприятно расположение избыточного феррита или цементита в виде сетки по границам зерен перлита.

Чугуны кроме деления на доэвтектический, например чугун V; эвтектический чугун VI и заэвтектический, например чугун VII, подразделяются на белые чугуны с метастабильной аустенитно-цементитной эвтектикой (ледебуритом) и серые чугуны со стабильной аустенитно-графитной эвтектикой.

Широкое распространение в качестве конструкционного материала получил серый чугун для отливок. Большая часть деталей машин и различных конструкций изготовлена из литых заготовок серого чугуна. Для получения качественных отливок из серого чугуна необходимо чтобы кристаллизация из жидкой фазы происходила в стабильной системе с образованием аустенитно-графитной эвтектики, а эвтектоидное превращение протекало как метастабильное с образованием перлита. Такая схема превращений обеспечивает высокие прочностные свойства чугуна и хорошую обрабатываемость резанием литых заготовок. При образовании даже небольшого количества ледебурита (метастабильной эвтектики), так называемого отбела чугуна, отливки плохо или совсем не обрабатываются, изготовить из них детали становится невозможно, и они бракуются. Исправить отбел термической обработкой не всегда удается, в этом случае отбеленные отливки отправляют на переплав.

Промышленные железоуглеродистые сплавы являются многокомпонентными и кроме железа и углерода содержат другие элементы, которые влияют на температурно-концентрационные параметры фазовых превращений, структуру и свойства сплавов.

Серый чугун, например, содержит до 3%Si, который является сильным графитизирующим элементом, способным обеспечить формирование стабильной аустенитно-графитной эвтектики. Кроме кремния чугун содержит до 0,7% Mn. Марганец, напротив, повышает вероятность образования метастабильных структур, но наиболее полезным действием марганца в сером чугуне является его способность связывания вредной примеси – серы, которая попадает в чугун вместе с исходными шихтовыми материалами и коксом. Сера способна вызвать сильно развитый отбел в чугунных отливках.

Структура и свойства чугуна для отливок в значительной степени определяются не только составом, но и условиями превращений. Чугун одного и того же состава в зависимости от условий выплавки, внепечной обработки и других параметров литейной технологии может проявлять существенно разные свойства, и наоборот, разные по составу чугуны могут показывать одинаковые прочностные характеристики. Поэтому маркировка чугуна производится по пределу прочности при растяжении образцов, вырезанных из заготовок в виде стержней Æ30 мм, отлитых в сырую песчано-глинистую форму.

Так, например чугун марки СЧ 20 показал прочность при растяжении образцов не менее 20 кгс/мм2. Если при испытании образцов, полученных описанным способом, предел прочности составил более 25 кгс/мм2, чугуну присваивается марка СЧ 25, и т.д. Серый чугун марок СЧ содержит в своей структуре графит в виде разветвленных пластин, которые прогрессивно разупрочняют металлическую основу. Прочностные характеристики графита по сравнению с металлической основой чугуна ничтожны, и действие графитовых пластинок может быть приравнено к действию трещин. Поэтому серый чугун с пластинчатым графитом типа СЧ не может достигать прочности, сравнимой с прочностью стали, а также не проявляет пластичности.

Но если графитовые включения имеют шаровидную форму, так, например, в высокопрочном чугуне типа ВЧ, его поражающее действие ослабляется, существенно повышается прочность чугуна, и даже проявляется пластичность металлической основы. Маркировка высокопрочных чугунов производится буквами ВЧ и цифрами минимальной прочности в кгс/мм2 или [0,1´МПа].

Промежуточная форма графита – вермикулярный графит в чугуне типа ЧВГ и компактный графит отжига в ковком чугуне типа КЧ, который маркируется кроме этих букв цифрами прочности sв в тех же единицах и относительного удлинения d в процентах.

Железоуглеродистые сплавы, в структуре которых отсутствует эвтектика, называются стали. Стали являются основным конструкционным материалом машиностроения. Заготовки для стальных деталей получают литьем или ковкой сортового проката.