Материалы высокого сопротивления

Сплавы для электронагревательных элементов должны длительно работать на воздухе при высоких температурах (иногда до 1000° С и даже выше). Кроме того, во многих случаях требуется технологичность сплавов — возможность изготовления из них гибкой проволоки, иногда весьма тонкой (диаметром порядка сотых долей миллиметра). Наконец, желательно, чтобы сплавы, используемые для приборов, производимых в больших количествах — реостатов, электроплиток, электрических чайников, паяльников и т. п. — были дешевыми и по возможности не содержали дефицитных компонентов.
Манганин - это наиболее типичный и широко применяемый для изготовления образцовых резисторов и т. п. сплав. Примерный состав его: Си — 85%, Mn — 12%,, Ni — 3%; название происходит от наличия в нем марганца (латинское manganum); желтоватый цвет объясняется большим содержанием меди. Значение ρ манганина 0,42—0,48 мкОм·м. Манганин может вытягиваться в тонкую (до диаметра 0,02 мм) проволоку; часто манганиновая проволока выпускается с эмалевой изоляцией.
Константан— сплав, содержащий около 60% меди и 40% никеля. Название «константан» объясняется значительным постоянством ρ при изменении температуры. По механическим свойствам константан близок к манганину, его плотность8,9 Мг/м3. Нагревостойкость константана выше, чем манганина: константан можно применять для изготовления реостатов и электронагревательных элементов, длительно работающих при температуре 450° С. Существенным отличием константана от манганина является высокая термо-э. д. с. константана в паре с медью, а также с железом: его коэффициент термо-э. д. с. в паре с медью составляет 45—55 мкВ/К. Это является недостатком при использовании константановых резисторов в измерительных схемах; при наличии разности температур в местах контакта константановых проводников с медными возникают термоэлектродвижущие силы, которые могут явиться источником ошибок, особенно при мостовых и потенциометрических методах измерений. Зато константан с успехом может быть использован при изготовлении термопар, служащих для измерения температуры, если последняя не превышает нескольких сотен градусов.

Широкому применению константана препятствует большое содержание в его

составе дорогого и дефицитного никеля.
Сплавы на основе железа. Эти сплавы в основном применяются для электронагревательных элементов. Высокая нагревостойкость таких элементов объясняется введением в их состав достаточно больших количеств металлов, имеющих высокое значение объемного коэффициента оксидации К и потому при нагреве на воздухе образующих практически сплошную оксидную пленку.

Такими металлами являются никель, хром и алюминий. Железо, как уже отмечалось выше, имеет объемный коэффициент оксидации меньше единицы и потому при нагреве легко окисляется; чем больше содержание железа в сплаве, например с Ni и Сr, тем менее нагревостоек этот сплав.

Сплавы системы Fe—Ni—Сг называются нихромами или (c повышенном содержании Fe) ферронихромами; сплавы системы Fe—Сr—Аl называются фехралями и хромалями. Происхождение названий этих сплавов не требует разъяснения. В обозначении буквы обозначают наиболее характерные элементы, входящие в состав сплава, причем буква входит в название элемента, но не обязательно является первой буквой этого названия (например, Б означает ниобий, В— вольфрам, Г — марганец, Д — медь, К — кобальт, Л — бериллий, Н— никель, Т—титан, X — хром, Ю— алюминий и т. п.), а число — приблизительное содержание данного компонента в сплаве (в процентах по массе).

Стойкость хромо-никелевых сплавов при высокой температуре в воздушной среде объясняется близкими значениями температурных коэффициентов линейного расширения этих сплавов и их оксидных пленок. Поэтому растрескивание оксидных пленок имеет место только при резких сменах температуры; тогда при последующих нагревах кислород воздуха будет проникать в образовавшиеся трещины и производить дальнейшее окисление сплава. Поэтому при многократном кратковременном включении электронагревательного элемента из нихрома он может перегореть значительно скорее, чем в случае непрерывной работы элемента при той же температуре.

Срок жизни элементов из нихрома и других нагревостойких сплавов существенно укорачивается также при наличии колебаний сечения проволоки: в местах с уменьшенным сечением нагревательные элементы перегреваются и легче перегорают.

Длительность работы электронагревательных элементов из нихрома и аналогичных сплавов может быть во много раз увеличена при исключении доступа кислорода к поверхности проволоки.