рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Сверхтвердые инструментальные материалы.

Сверхтвердые инструментальные материалы. - раздел Машиностроение, Ознакомление со способами получения, составом и свойствами неметаллических конструкционных материалов, применяемых в машиностроении 1. Минералокерамика – Синтетический Материал, Основой Которо...

1. Минералокерамика – синтетический материал, основой которого служит глинозем ( А12О3), подвергнутый спеканию при температуре 1720…1750 °С. Минералокерамика заменяет металлокерамические твердые сплавы в тех случаях, когда обработка осуществляется без ударов при относительно малых подачах ( 0,15 – 0,6 мм/об) и больших скоростях резания.

Минералокерамика допускает высокие скорости резания до 300 – 400 м/мин, весьма дешевая, но недостаточно прочна и совершенно не выдерживает ударных нагрузок. Используется только для получистовых и чистовых операций при безударных нагрузках. Минералокерамика для режущих инструментов изготовляется в виде пластинок, подобных пластинкам твердого сплава. Минералокерамические пластинки обладают высокой твердостью, способностью сохранять режущие свойства при температуре около 1200 С, что позволяет вести обработку на больших скоростях резания. Недостатком этих пластинок является большая хрупкость, ограничивающая их применение в случае обработки по обдирке с неравномерным припуском и при прерывистом резании.

Минералокерамика ЦМ-332, известная в промышленности как корундовый микролит, характеризуется сочетанием следующих высоких физико-механических свойств. Однако минералокерамика обладает низкой ударной вязкостью, малой пластичностью и большой хрупкостью, поэтому применение минералокерамики в настоящее время ограничивается только операциями чистовой и получистовой обработки с равномерным припуском и на станках достаточно высокой жесткости. Недостатком минералокерамики марки ЦМ-332 является повышенная хрупкость.

Преимуществом минералокерамики является высокая износоустойчивость до температуры 1000 °С и недефицитность исходного материала для изготовления, недостатком - высокая природная хрупкость.

Применение минералокерамики для токарной обработки металлов с каждым годом расширяется. Замена твердосплавных резцов резцами, оснащенных минералокерамикой, повышает производительность труда на многих операциях при одновременном увеличении периода стойкости резцов.

Недостатками минералокерамики являются низкая прочность и большая хрупкость.

2. Одним из направлений совершенствования режущих свойств инструментов, позволяющим повысить производительность труда при механической обработке, является повышение твердости и теплостойкости инструментальных материалов. Наиболее перспективными в этом отношении являются алмаз и синтетические сверхтвердые материалы на основе нитрида бора.

Алмазы и алмазные инструменты широко используются при обработке деталей из различных материалов. Для алмазов характерны исключительно высокая твердость и износостойкость. По абсолютной твердости алмаз в 4 - 5 раз тверже твердых сплавов и в десятки и сотни раз превышает износостойкость других инструментальных материалов при обработке цветных сплавов и пластмасс. Кроме того, вследствие высокой теплопроводности алмазы лучше отводят теплоту из зоны резания, что способствует гарантированному получению деталей с бесприжоговой поверхностью. Однако алмазы весьма хрупки, что сильно сужает область их применения.

Для изготовления режущих инструментов основное применение получили искусственные алмазы, которые по своим свойствам близки к естественным. При больших давлениях и температурах в искусственных алмазах удается получить такое же расположение атомов углерода, как и в естественных. Масса одного искусственного алмаза обычно составляет 1/8—1/10 карата (1 карат - 0,2 г). Вследствие малости размеров искусственных кристаллов они непригодны для изготовления таких инструментов, как сверла, резцы и другие, а поэтому применяются при изготовлении порошков для алмазных шлифовальных кругов и притирочных паст.

Лезвийные алмазные инструменты выпускаются на основе поликристаллических материалов типа «карбонадо» или «баллас». Эти инструменты имеют длительные размерные периоды стойкости и обеспечивают высокое качество обработанной поверхности. Применяются они при обработке титановых, высококремнистых алюминиевых сплавов, стеклопластиков и пластмасс, твердых сплавов и других материалов.

Алмаз как инструментальный материал имеет существенный недостаток — при повышенной температуре он вступает в химическую реакцию с железом и теряет работоспособность.

Для того чтобы обрабатывать стали, чугуны и другие материалы на основе железа, были созданы сверхтвердые материалы, химически инертные к нему. Такие материалы получены по технологии, близкой к технологии получения алмазов, но в качестве исходного вещества используется не графит, а нитрид бора.

Поликристаллы плотных модификаций нитрида бора превосходят по теплостойкости все материалы, применяемые для лезвийного инструмента: алмаз в 1,9 раза, быстрорежущую сталь в 2,3 раза, твердый сплав в 1,7 раза, минералокерамику в 1,2 раза.

Эти материалы изотропны (одинаковая прочность в различных направлениях), обладают микротвердостью меньшей, но близкой к твердости алмаза, повышенной теплостойкостью, высокой теплопроводностью и химической инертностью по отношению к углероду и железу.

Эффективность применения лезвийных инструментов из различных марок композитов связана с совершенствованием конструкции инструментов и технологии их изготовления и с определением рациональной области их использования:

композиты 01 (эльбор-Р) и 02 (белбор) используют для тонкого и чистового точения и фрезерования без ударов деталей из закаленных сталей твердостью 55...70 НRС, чугунов и твердых сплавов ВК15, ВК20 и ВК25 с подачами до 0,20 мм/об и глубиной резания до 0,8

композит 05 применяют для чистового и получистового точения без ударов деталей из закаленных сталей твердостью 40...58 HRC, чугунов твердостью до 300 НВ с подачами до 0,25 мм/об и глубиной до 2,5 мм

композит 10 (гексанит-Р) используют для тонкого, чистового и получистового точения и фрезерования с ударами деталей из закаленных сталей твердостью не выше 58 HRC, чугунов любой твердости, сплавов ВК15, ВК20, ВК25 с подачей до 0,15 мм/об и глубиной резания до 0,6 мм

 

При этом период стойкости инструментов возрастает в десятки раз по сравнению с другими инструментальными материалами.

Область применения СТМ до недавнего времени ограничивалась из-за сравнительно небольших размеров поликристаллов. В настоящее время освоен выпуск двухслойных неперетачиваемых пластин, состоящих из твердого сплава (основа) и слоя из поликристаллов алмаза или нитрида бора толщиной до 0,5 мм, что повышает общую эффективность использования инструментов из сверхтвердых материалов.

– Конец работы –

Эта тема принадлежит разделу:

Ознакомление со способами получения, составом и свойствами неметаллических конструкционных материалов, применяемых в машиностроении

Вопросы... Цели и задачи дисциплины Материаловедение и технология материалов... Связь дисциплины Материаловедение и технология материалов с другими дисциплинами...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Сверхтвердые инструментальные материалы.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Продукты доменной плавки.
1. Исходные материалы для производства чугуна: 1.Железные руды: -красный железняк, или гематит Fе2О3; содержит в

Производство стали в электрических печах.
1.Шихтовыми материалами для выплавки стали являются жидкий или твердый чугун, стальной и чугунный лом, стружка, обрезки (скрап), железорудные окатыши, ферросплавы (перечисленные ма

Непрерывная разливка (в кристаллизатор).
  1. Выплавленная в печи сталь выпускается в ковш и разливает­ся в изложницы или кристаллизатор, либо разливке предшеству­ет рафинирование стали. Внепечное рафинирова

Производство магния. Магниевые руды. Понятие об электролитическом способе получения магния.
  1. Медь – металл красновато – розового цвета, плотностью 8940 кг/м3, с температурой плавления 1083°С. Она обладает высокой электропроводностью, теплопро­

Понятие о свойствах металлов.
1. Большое число различных металлов, кото­рые применяют в технике, можно разделить на черные и цветные. Черные металлы имеют темно-серый цвет, большую плотность, вы

Методы исследования микро- и макроструктуры металлов и сплавов, контроля качества изделий.
1.К механическим свойствам металлов относят: Прочность – это способность материала сопротивляться деформациям и раз­рушению под действием внеш­них сил.

Методы контроля качества изделий.
1.Макроанализ. Для макроанализа приготовляют образец – шлиф или излом, по которому выявляют макроструктуру – строение металла или сплава, видимое невооруженным глазом или в

Диаграммы состояния двойных сплавов. Критические точки и линии.
1.Металлическими сплавами называются соединения двух или нескольких металлов и неметаллов, у которых сохраняются металлические свойства. Сплавы можно получить сплавлением ко

Деление железоуглеродистых сплавов на стали и чугуны.
1. На диаграмме состояния (рис. 21) представлены две системы сплавов. Система Fе – Fе3С называется неустой­чивой (метастабильной) в связи с тем, что цементит представляе

Структуры, получаемые при различных скоростях охлаждения.
1.При нормальной температуре доэвтектоидные стали имеют структуру феррит плюс перлит, эвтектоидные – перлит, заэвтектоидные – перлит + це­ментит, то есть исходное состояние всех ст

Нормализация.
  1. Термической обработкой называют совокупность операций нагрева, выдержки и охлаждения металлических сплавов, находящихся в твердом состоя­нии, для изме

Отпуск. Виды отпуска.
1. Процесс закалки стали заключается в ее нагреве до определенной температуры (на 30...50° выше линии GSK по диаграмме Fe – Fe3C), выдержке и по­следующем быстром

Дефекты и брак при термической обработке.
  1. Низколегированные стали при закалке охлаждают в воде, так же как и углеродистые. Увели­чение содержания легирующих элементов в стали вызы­вает понижение теплопро

Азотирование.
1. Целью химико-термической обработки является получение по­верхностного слоя стальных изделий, обладающего повышенными твердостью, износоустойчивостью, жаростойкостью или корро

Газовое цианирование.
3. Диффузионная металлизация, её виды. 1. Цианирование.Цианирование – насыщение поверхностного слоя одновременно углеродом и азотом; оно бывает жидкостным

Влияние примесей на свойства углеродистой стали.
Наличие небольшого количества обычных примесей в стали не влияет существенно на положение критических точек и ха­рактер линий диаграммы железо – цементит, поэтому сталь можно рассматривать с извест

Углеродистые инструментальные стали.
1. По химическому составу стали подразделяют на малоуглеродистые (до 0,3% С), среднеуглеродистые (0,3...0,65 % С) и высокоуглеродистые (свыше 0,65% С). По качеству ра

Легирование чугунов, их маркировка и область применения.
1.Сталь, содержащая, кроме постоянных при­месей (марганец, кремний), один или несколько спе­циальных элементов или повышенные концентрации марганца и кремния (>1 %), называется

Цементируемые стали.
1. Низколегированные стали.Согласно ГОСТ 19282–73, установ­лено 28 марок такой стали. Они содержат 1,5…2,5 % легирующих элементов, которые определяют измельчение перлитной составля

Быстрорежущие стали.
1.Условия работы от­дельных видов инструментов различны и для различных видов инструментов применяют материалы, наиболее подходящие по своим качествам к данным условиям работы.

Прочие стали и сплавы с особыми свойствами.
1. Шарикоподшипниковые стали.Хромовая сталь с массовым содержанием 0,95…1,15 % С и 0,4…1,65 Сr образует группу высо­кокачественных шарикоподшипниковых сталей (ГОСТ 801–78) ШХ6, ШХ9

Получение металлокерамических твердых сплавов.
1. Металлокерамические твердые сплавы.Эти сплавы применяют в виде пластинок к режущему инструменту и инструменту для буров при бурении горных пород, а также в виде фильер дл

Ковкие чугуны, их свойства, маркировка и область применения.
1. Белый чугун. В белом чугуне весь углерод находится в связанном состоянии в виде карбида же­леза. Такой чугун в изломе имеет белый цвет и харак­терный металлический блеск.

Бронзы, их свойства, маркировка и область применения.
  1. Медь обладает высокой электропроводно­стью, пластичностью, коррозионной устойчивостью и спо­собна с другими металлами образовывать ряд сплавов. Для техн

Спеченные алюминиевые сплавы.
1. Алюминий и его сплавы. Характерные свой­ства алюминия – высокая пластичность, теплопровод­ность, электропроводность и малая прочность. Он слабо подвергается коррозии на воздухе,

Титан и его сплавы.
1. Механические свойства металлического магния очень невысоки, поэтому для изготов­ления деталей он не применяется. Магниевые сплавы об­ладают меньшими удельным весом, теплопроводн

Оловянные и свинцовые баббиты.
4. Металлокерамические пористые подшипниковые спла­вы, 1. Антифрикционные,илиподшипниковые сплавы применяют для изготовления подшипников.

Методы борьбы с коррозией металлов.
1.Разрушение металлов под воздействием ок­ружающей среды называют коррозией. Другими словами, коррозия – это процесс превращения металлов в окисленное состояние. Классифик

Полимеризация и поликонденсация полимеров.
1. Полимерами называют вещества, молекулы которых (макро­молекулы) состоят из большого числа повторяющихся группиро­вок, или мономерных звеньев, соединенных между собою химичес­ким

Способы получения изделий из пластмасс и их применение.
1.Пластическими массами (пластиками) на­зывают материалы, которые при определенной темпе­ратуре приобретают пластические свойства, то есть спо­собность принимать в результате пресс

Применение резиновых изделий.
1.Резинойназывают продукты химической переработки каучука и вулканизирующих веществ (сера, натрий), осуществляемой при помощи термической обработки (горячая вулканизация) ил

Применение древесины в сельхозпроизводстве.
1.Древесина используется в качестве конструкционного материала в различных отраслях промышленности как в натуральном, так и переработанном виде. Преимущества древесины:

Основные типы клеевых материалов и их применение.
1.Лакокрасочные материалы – это жидкие композиции, образующие после нанесения и высыхания пленку, соединяющуюся с окрашиваемой поверхностью. Эту пленку называют лакокрасочным покры

Фрикционные материалы.
1. Прокладочные материалы предназначены для создания герметичности сопрягаемых деталей с целью предохранения от попадания пыли, а также выте­кания смазки, газов и др. К прокладочны

Применение порошковых сплавов в ремонтном производстве
1. Сплавы, получаемые из металлических по­рошков прессованием и последующим спеканием без рас­плавления, называют порошковыми, а метод получения – порошковой металлургией.

Механическая обработка напыленных покрытий.
1.Плазменное напыление представляет собой дальнейшее развитие техники металлизации распылением. Физическое понятие «плазма» было введено в 1923 г. Лангмером для обозначения газообр

Дисперсно-упрочненные композитные материалы на алюминиевой основе.
1. Материалы сложного состава, образующиеся путем сочетания различных фаз с границей раздела между ними, называются композиционными. Композиционные материалы состоя

Органоволокниты.
  1. Карбоволокниты (углепласты) представляют собой ком­позиции, состоящие из полимерного связуюшего (матрицы) и уп­рочнителей в виде углеродных волокон (карбоволокон

Сплавы с эффектом памяти.
1. Металлические стекла, или аморфные сплавы, получают путем охлаждения расплава со скоростью, превышающей скорость кристаллизации (106…108 °С/с). В этом случ

Бескислородная керамика.
  1. Керамика – неорганический материал, получаемый из отформованных минеральных масс в процессе высокотемператур­ного обжига. В результате обжига (1200…2500 °С) форм

Основные сведения об изготовлении литейной формы.
1.Процесс получения заготовок деталей ма­шин и других изделий методом литья называют литей­ным производством. Отливают заготовки массой от нескольких граммов до сотен тонн практиче

Прокатка, ее виды. Понятие о прокатном производстве.
1. Обработка давлением основана на способности металлов необратимо изменять свою форму без разрушения под действием внешних сил. Она обеспечивает получение заготовок для производст

Металлургические процессы при сварке, сварочные напряжения и деформации, причины их появления и методы предупреждения.
1. Сваркой называют процесс получения не­разъемных соединений посредством установления меж­атомных связей между свариваемыми частями при их местном (общем) нагреве или пласт

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги