рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Органоволокниты.

Органоволокниты. - раздел Машиностроение, Ознакомление со способами получения, составом и свойствами неметаллических конструкционных материалов, применяемых в машиностроении   1. Карбоволокниты (Углепласты) Представляют ...

 

1. Карбоволокниты (углепласты) представляют собой ком­позиции, состоящие из полимерного связуюшего (матрицы) и уп­рочнителей в виде углеродных волокон (карбоволокон).

Высокая энергия связи С–С углеродных волокон позволяет им сохранять прочность при очень высоких температурах (в нейтральной и восстановительной средах до 2200 °С), а также при низких температурах. От окисления поверхности волокна пре­дохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются свя­зующим (низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержанию карбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6…2,5 раза. Применяется вискеризация ните­видных кристаллов TiО2, A1N и Si3N4, что дает увеличение межслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.

Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиро­лизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

Эпоксифенольные карбоволокниты КМУ–1л, упрочненный угле­родной лентой, и КМУ–1у на жгуте, вискеризованном нитевид­ными кристаллами, могут длительно работать при температуре до 200 °С.

Карбоволокниты КМУ–3 и КМУ–3л получают на эпоксиани-линоформальдегидном связующем, их можно эксплуатировать при температуре до 100 °С, они наиболее технологичны. Карбоволокниты КМУ–2 и КМУ–2л на основе полиимидного связующего можно применять при температуре до 300 °С

Карбоволокниты отличаются высоким статическим и динами­ческим сопротивлением усталости, сохраняют это свой­ство при нормальной и очень низкой температуре (высокая тепло­проводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- и химически стойкие.

2. Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя – борных волокон.

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и моду­лем упругости, теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.

Помимо непрерывного борного волокна применяют комплекс­ные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала.

В качестве матриц для получения бороволокнитов исполь­зуют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ–1 и КМБ–1к предназначены для длительной работы при температуре 200 °С; КМБ–3 и КМБ–3к не требуют высокого давления при переработке и могут работать при темпе­ратуре не свыше 100 °С; КМБ–2к работоспособен при 300 °С.

Бороволокниты обладают высокими сопротивлениями уста­лости, они стойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.

Изделия из бороволокнитов применяют в авиационной и кос­мической технике (профили, панели, роторы и лопатки компрес­соров, лопасти винтов и трансмиссионные валы вертолетов и т. д.).

3.Органоволокниты представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокими удельной проч­ностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Для синтетических воло­кон потери прочности при текстильной переработке небольшие; они малочувствительны к повреждениям.

В органоволокнитах значения модуля упругости и температур­ных коэффициентов линейного расширения упрочнителя и свя­зующего близки. Происходит диффузия компонентов связующего в волокно и химическое взаимодействие между ними. Структура материала бездефектна. Пористость не превышает 1…3 % (в дру­гих материалах 10…20 %). Отсюда стабильность механических свойств органоволокнитов при резком перепаде температур, дей­ствии ударных и циклических нагрузок. Ударная вязкость высо­кая (400…700 кДж/м2). Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластичных волокон).

Органоволокниты устойчивы в агрессивных средах и во влаж­ном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая. Большинство органоволокнитов может длительно работать при температуре 100…150 °С, а на основе полиимидиого связующего и полиоксадиазольных волокон – при 200…300 °С.

В комбинированных материалах наряду с синтетическими волокнами применяют минеральные (стеклянные, карбоволокка и бороволокна). Такие материалы обладают большей прочностью и жесткостью.

Органоволокниты применяют в качестве изоляционного и кон­струкционного материала в электрорадиопромышленности, авиа­ционной технике, автостроении; из них изготовляют трубы, ем­кости для реактивов, покрытия корпусов судов и др.

– Конец работы –

Эта тема принадлежит разделу:

Ознакомление со способами получения, составом и свойствами неметаллических конструкционных материалов, применяемых в машиностроении

Вопросы.. цели и задачи дисциплины материаловедение и технология материалов.. связь дисциплины материаловедение и технология материалов с другими дисциплинами..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Органоволокниты.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Продукты доменной плавки.
1. Исходные материалы для производства чугуна: 1.Железные руды: -красный железняк, или гематит Fе2О3; содержит в

Производство стали в электрических печах.
1.Шихтовыми материалами для выплавки стали являются жидкий или твердый чугун, стальной и чугунный лом, стружка, обрезки (скрап), железорудные окатыши, ферросплавы (перечисленные ма

Непрерывная разливка (в кристаллизатор).
  1. Выплавленная в печи сталь выпускается в ковш и разливает­ся в изложницы или кристаллизатор, либо разливке предшеству­ет рафинирование стали. Внепечное рафинирова

Производство магния. Магниевые руды. Понятие об электролитическом способе получения магния.
  1. Медь – металл красновато – розового цвета, плотностью 8940 кг/м3, с температурой плавления 1083°С. Она обладает высокой электропроводностью, теплопро­

Понятие о свойствах металлов.
1. Большое число различных металлов, кото­рые применяют в технике, можно разделить на черные и цветные. Черные металлы имеют темно-серый цвет, большую плотность, вы

Методы исследования микро- и макроструктуры металлов и сплавов, контроля качества изделий.
1.К механическим свойствам металлов относят: Прочность – это способность материала сопротивляться деформациям и раз­рушению под действием внеш­них сил.

Методы контроля качества изделий.
1.Макроанализ. Для макроанализа приготовляют образец – шлиф или излом, по которому выявляют макроструктуру – строение металла или сплава, видимое невооруженным глазом или в

Диаграммы состояния двойных сплавов. Критические точки и линии.
1.Металлическими сплавами называются соединения двух или нескольких металлов и неметаллов, у которых сохраняются металлические свойства. Сплавы можно получить сплавлением ко

Деление железоуглеродистых сплавов на стали и чугуны.
1. На диаграмме состояния (рис. 21) представлены две системы сплавов. Система Fе – Fе3С называется неустой­чивой (метастабильной) в связи с тем, что цементит представляе

Структуры, получаемые при различных скоростях охлаждения.
1.При нормальной температуре доэвтектоидные стали имеют структуру феррит плюс перлит, эвтектоидные – перлит, заэвтектоидные – перлит + це­ментит, то есть исходное состояние всех ст

Нормализация.
  1. Термической обработкой называют совокупность операций нагрева, выдержки и охлаждения металлических сплавов, находящихся в твердом состоя­нии, для изме

Отпуск. Виды отпуска.
1. Процесс закалки стали заключается в ее нагреве до определенной температуры (на 30...50° выше линии GSK по диаграмме Fe – Fe3C), выдержке и по­следующем быстром

Дефекты и брак при термической обработке.
  1. Низколегированные стали при закалке охлаждают в воде, так же как и углеродистые. Увели­чение содержания легирующих элементов в стали вызы­вает понижение теплопро

Азотирование.
1. Целью химико-термической обработки является получение по­верхностного слоя стальных изделий, обладающего повышенными твердостью, износоустойчивостью, жаростойкостью или корро

Газовое цианирование.
3. Диффузионная металлизация, её виды. 1. Цианирование.Цианирование – насыщение поверхностного слоя одновременно углеродом и азотом; оно бывает жидкостным

Влияние примесей на свойства углеродистой стали.
Наличие небольшого количества обычных примесей в стали не влияет существенно на положение критических точек и ха­рактер линий диаграммы железо – цементит, поэтому сталь можно рассматривать с извест

Углеродистые инструментальные стали.
1. По химическому составу стали подразделяют на малоуглеродистые (до 0,3% С), среднеуглеродистые (0,3...0,65 % С) и высокоуглеродистые (свыше 0,65% С). По качеству ра

Легирование чугунов, их маркировка и область применения.
1.Сталь, содержащая, кроме постоянных при­месей (марганец, кремний), один или несколько спе­циальных элементов или повышенные концентрации марганца и кремния (>1 %), называется

Цементируемые стали.
1. Низколегированные стали.Согласно ГОСТ 19282–73, установ­лено 28 марок такой стали. Они содержат 1,5…2,5 % легирующих элементов, которые определяют измельчение перлитной составля

Быстрорежущие стали.
1.Условия работы от­дельных видов инструментов различны и для различных видов инструментов применяют материалы, наиболее подходящие по своим качествам к данным условиям работы.

Прочие стали и сплавы с особыми свойствами.
1. Шарикоподшипниковые стали.Хромовая сталь с массовым содержанием 0,95…1,15 % С и 0,4…1,65 Сr образует группу высо­кокачественных шарикоподшипниковых сталей (ГОСТ 801–78) ШХ6, ШХ9

Получение металлокерамических твердых сплавов.
1. Металлокерамические твердые сплавы.Эти сплавы применяют в виде пластинок к режущему инструменту и инструменту для буров при бурении горных пород, а также в виде фильер дл

Сверхтвердые инструментальные материалы.
1. Минералокерамика – синтетический материал, основой которого служит глинозем ( А12О3), подвергнутый спеканию при температуре 1720…1750 °С. Минералокерамика

Ковкие чугуны, их свойства, маркировка и область применения.
1. Белый чугун. В белом чугуне весь углерод находится в связанном состоянии в виде карбида же­леза. Такой чугун в изломе имеет белый цвет и харак­терный металлический блеск.

Бронзы, их свойства, маркировка и область применения.
  1. Медь обладает высокой электропроводно­стью, пластичностью, коррозионной устойчивостью и спо­собна с другими металлами образовывать ряд сплавов. Для техн

Спеченные алюминиевые сплавы.
1. Алюминий и его сплавы. Характерные свой­ства алюминия – высокая пластичность, теплопровод­ность, электропроводность и малая прочность. Он слабо подвергается коррозии на воздухе,

Титан и его сплавы.
1. Механические свойства металлического магния очень невысоки, поэтому для изготов­ления деталей он не применяется. Магниевые сплавы об­ладают меньшими удельным весом, теплопроводн

Оловянные и свинцовые баббиты.
4. Металлокерамические пористые подшипниковые спла­вы, 1. Антифрикционные,илиподшипниковые сплавы применяют для изготовления подшипников.

Методы борьбы с коррозией металлов.
1.Разрушение металлов под воздействием ок­ружающей среды называют коррозией. Другими словами, коррозия – это процесс превращения металлов в окисленное состояние. Классифик

Полимеризация и поликонденсация полимеров.
1. Полимерами называют вещества, молекулы которых (макро­молекулы) состоят из большого числа повторяющихся группиро­вок, или мономерных звеньев, соединенных между собою химичес­ким

Способы получения изделий из пластмасс и их применение.
1.Пластическими массами (пластиками) на­зывают материалы, которые при определенной темпе­ратуре приобретают пластические свойства, то есть спо­собность принимать в результате пресс

Применение резиновых изделий.
1.Резинойназывают продукты химической переработки каучука и вулканизирующих веществ (сера, натрий), осуществляемой при помощи термической обработки (горячая вулканизация) ил

Применение древесины в сельхозпроизводстве.
1.Древесина используется в качестве конструкционного материала в различных отраслях промышленности как в натуральном, так и переработанном виде. Преимущества древесины:

Основные типы клеевых материалов и их применение.
1.Лакокрасочные материалы – это жидкие композиции, образующие после нанесения и высыхания пленку, соединяющуюся с окрашиваемой поверхностью. Эту пленку называют лакокрасочным покры

Фрикционные материалы.
1. Прокладочные материалы предназначены для создания герметичности сопрягаемых деталей с целью предохранения от попадания пыли, а также выте­кания смазки, газов и др. К прокладочны

Применение порошковых сплавов в ремонтном производстве
1. Сплавы, получаемые из металлических по­рошков прессованием и последующим спеканием без рас­плавления, называют порошковыми, а метод получения – порошковой металлургией.

Механическая обработка напыленных покрытий.
1.Плазменное напыление представляет собой дальнейшее развитие техники металлизации распылением. Физическое понятие «плазма» было введено в 1923 г. Лангмером для обозначения газообр

Дисперсно-упрочненные композитные материалы на алюминиевой основе.
1. Материалы сложного состава, образующиеся путем сочетания различных фаз с границей раздела между ними, называются композиционными. Композиционные материалы состоя

Сплавы с эффектом памяти.
1. Металлические стекла, или аморфные сплавы, получают путем охлаждения расплава со скоростью, превышающей скорость кристаллизации (106…108 °С/с). В этом случ

Бескислородная керамика.
  1. Керамика – неорганический материал, получаемый из отформованных минеральных масс в процессе высокотемператур­ного обжига. В результате обжига (1200…2500 °С) форм

Основные сведения об изготовлении литейной формы.
1.Процесс получения заготовок деталей ма­шин и других изделий методом литья называют литей­ным производством. Отливают заготовки массой от нескольких граммов до сотен тонн практиче

Прокатка, ее виды. Понятие о прокатном производстве.
1. Обработка давлением основана на способности металлов необратимо изменять свою форму без разрушения под действием внешних сил. Она обеспечивает получение заготовок для производст

Металлургические процессы при сварке, сварочные напряжения и деформации, причины их появления и методы предупреждения.
1. Сваркой называют процесс получения не­разъемных соединений посредством установления меж­атомных связей между свариваемыми частями при их местном (общем) нагреве или пласт

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги