рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Бескислородная керамика.

Бескислородная керамика. - раздел Машиностроение, Ознакомление со способами получения, составом и свойствами неметаллических конструкционных материалов, применяемых в машиностроении   1. Керамика – Неорганический Материал, Получ...

 

1. Керамика – неорганический материал, получаемый из отформованных минеральных масс в процессе высокотемператур­ного обжига. В результате обжига (1200…2500 °С) формируется структура материала (спекание), и изделие приобретает необходи­мые физико-механические свойства.

Техническая керамика включает искусственно синтезирован­ные керамические материалы различного химического и фазового состава; она обладает специфическими комплексами свойств. Такая керамика содержит минимальное количество или совсем не содержит глины. Основными компонентами технической керамики являются оксиды и бескислородные соединения металлов. Любой керамический материал является многофазной системой. В кера­мике могут присутствовать кристаллическая, стекловидная и газо­вая фазы.

Кристаллическая фаза представляет собой определенные хи­мические соединения или твердые растворы. Эта фаза составляет основу керамики и определяет значения механической прочности, термостойкости и других ее основных свойств.

Стекловидная фаза находится в керамике в виде прослоек стекла, связывающих кристаллическую фазу. Обычно керамика содержит 1…10 % стеклофазы, которая снижает механическую прочность и ухудшает тепловые показатели. Однако стеклообразующие компоненты (глинистые вещества) облегчают технологию изготовления изделий.

Газовая фаза представляет собой газы, находящиеся в порах керамики; по этой фазе керамику подразделяют на плотную, без открытых пор и пористую. Наличие даже закрытых пор нежела­тельно, так как снижается механическая прочность материала.

Большинство видов специальной технической керамики обла­дает плотной спекшейся структурой поликристаллического строе­ния, для ее получения применяют специфические технологические приемы.

2. Керамика на основе чистых оксидов. В производстве оксидной керамики используют в основном следующие оксиды: А12О3 (ко­рунд), ZrО2, MgO, CaO, ВеО, ThО2, UО2. Структура керамики однофазная поликристаллическая. Кроме кристаллической фазы может содержаться небольшое количество газов (поры) и стекло­видной фазы, которая образуется в результате наличия примесей в исходных материалах. Температура плавления чистых оксидов превышает 2000 °С, поэтому их относят к классу высокоогнеупоров. Как и для других неорганических материалов, оксидная керамика обладает высокой прочностью при сжатии по сравнению с проч­ностью при растяжении или изгибе; более прочными являются мелкокристаллические структуры, так как при крупнокристалли­ческом строении на границе между кристаллами возникают значи­тельные внутренние напряжения.

Керамика на основе А12О3 (корундовая) обладает высокой проч­ностью, которая сохраняется при высоких температурах, хими­чески стойка, отличный диэлектрик. Термическая стойкость корунда невысокая. Изделия из него широко применяют во многих областях техники: резцы, используемые при больших скоростях резания, калибры, фильеры для протяжки стальной проволоки, детали высокотемпературных печей, подшипники печных конвей­еров, детали насосов, свечи зажигания в двигателях внутреннего сгорания. Керамику с плотной структурой используют в качестве вакуумной, пористую – как термоизоляционный материал. В ко­рундовых тиглях проводят плавление различных металлов, окси­дов, шлаков. Корундовый материал микролит (ЦМ-332) по свой­ствам превосходит другие инструментальные материалы, его плот­ность до 3960 кг/м3, σсж до 5000 МПа, твердость 92…93 HRA и красностойкость до 1200 °С. Из микролита изготовляют резцовые пластинки, фильеры, насадки, сопла, матрицы и др.

Особенностью оксида циркония (ZrО2) является слабокислотная или инертная природа, низкий коэффициент теплопроводности. Рекомендуемые температуры применения керамики из ZrО2 2000…2200 °С; она используется для изготовления огнеупорных тиглей для плавки металлов и сплавов, как тепловая изоляция печей, аппаратов и реакторов, в качестве покрытия на металлах для защиты последних от действия температур.

Керамика на основе оксидов магния и кальция стойка к действию основных шлаков различных металлов, в том числе и щелочных. Термическая стойкость их низкая. Оксид магния при высоких температурах летуч, оксид кальция способен к гидратации даже на воздухе. Их применяют для изготовления тиглей, кроме того, MgO используют для футеровки печей, пирометрической аппара­туры и т. д.

Керамика на основе оксида бериллия отличается высокой тепло­проводностью, что сообщает ей высокую термостойкость. Проч­ностные свойства материала невысокие. Оксид бериллия обладает способностью рассеивать ионизирующее излучение высоких энер­гий, имеет высокий коэффициент замедления тепловых нейтронов, применяется для изготовления тиглей для плавки некоторых чистых металлов, в качестве вакуумной керамики в ядерных реакторах.

Керамика на основе оксидов тория и урана имеет высокую температуру плавления, но обладает высокой плотностью и радио­активна. Эти виды керамики применяют для изготовления тиглей для плавки родия, платины, иридия и других металлов, в конструк­циях электропечей (ThО2), для тепловыделяющих элементов в энергетических реакторах (UО2).

2. Бескислородная керамика. К тугоплавким бескислородным соединениям относятся соединения элементов с углеродом (МеС) – карбиды, с бором (МеВ) – бориды, с азотом (MeN) – нитриды, с кремнием (MeSi) – силициды и с серой (MeS) – сульфиды. Эти соединения отличаются высокими огнеупорностью (2500…3500 °С), твердостью (иногда как у алмаза) и износостойкостью по отноше­нию к агрессивным средам. Материалы обладают высокой хруп­костью. Сопротивление окислению при высоких температурах (окалиностойкость) карбидов и боридов составляет 900…1000 °С, несколько ниже оно у нитридов. Силициды могут выдерживать температуру 1300…1700 °С (на поверхности образуется пленка кремнезема).

Карбиды. Широкое применение получил карбид кремния – карборунд (SiC). Он обладает высокой жаростойкостью (1500…1600 °С), высокой твердостью, устойчивостью к кислотам и не­устойчивостью к щелочам; применяется в качестве нагревательных стержней, защитных покрытий графита и в качестве абразива.

Бориды. Эти соединения обладают металлическими свойствами, их электропроводность очень высокая (ρv = (12…57) ∙ 10-1 Ом∙м). Они износостойки, тверды, стойки к окислению. В технике полу­чили распространение дибориды тугоплавких металлов (TiB2, ZrB2 и др.). Их легируют кремнием или дисилицидами, что делает их устойчивыми до температуры их плавления. Диборид циркония стоек в расплавах алюминия, меди, чугуна, стали и др. Его исполь­зуют для изготовления термопар, работающих при температуре свыше 2000 °С в агрессивных средах, труб, емкостей, тиглей. Покрытия из боридов повышают твердость, химическую стойкость и износостойкость изделий.

Нитриды. Неметаллические нитриды являются высокотермо­стойкими материалами, имеют низкие теплопроводность и электро­проводимость. При обычной температуре это изоляторы, а при высоких температурах – полупроводники. С повышением темпе­ратуры коэффициент линейного расширения и теплоемкость увели­чиваются. Твердость и прочность этих нитридов меньше, чем твер­дость и прочность карбидов и боридов. В вакууме при высоких температурах они разлагаются. Они стойки к окислению, действию металлических расплавов.

Нитрид бора а – BN – «белый графит» – имеет гексаго­нальную, графитоподобную структуру. Это мягкий порошок, стойкий к нейтральной и восстановительной атмосфере, исполь­зуется как огнестойкий смазочный материал, изделия из него тер­мостойки. Спеченный нитрид бора хороший диэлектрик при 1800 °С в бескислородной среде. Наиболее чистый нитрид бора приме­няется в качестве материала обтекателей антенн и электронного оборудования летательных аппаратов. Другой модификацией является β-BN – алмазоподобный нитрид бора с кубической структурой, называемый эльбором. Его получают при высоком давлении и температуре 1360 °С в присутствии катализатора. Плотность эльбора 3450 кг/м3, температура плавления 3000 °С. Он является заменителем алмаза, стоек к окислению до 2000 °С (алмаз начинает окисляться при температуре 800°С).

Нитрид кремния (Si3N4) более других нитридов устойчив на воздухе и в окислительной атмосфере до 1600 °С. По удельной прочности при высоких температурах Si3N4 превосходит все кон­струкционные материалы, а по стоимости он дешевле жаропрочных сплавов в несколько раз. Нитрид кремния прочный, износостой­кий, жаропрочный материал. Он применяется в двигателях внутреннего сгорания (головки блока цилиндров, поршни и др.), стоек к коррозии и эрозии, не боится перегрева теплонагруженных деталей.

Силициды отличаются от карбидов и боридов полупроводнико­выми свойствами, окалиностойкостью, они стойки к действию кислот и щелочей. Их можно применять при температуре 1300…1700 °С, при 1000 °С они не реагируют с расплавленным свинцом, оловом и натрием. Дисилицид молибдена (MoSi2) используется наиболее широко в качестве стабильного электронагревателя в печах при температуре 1700 °С в течение нескольких тысяч часов. Из спеченного MoSi2 изготовляют лопатки газовых турбин, сопло­вые вкладыши двигателей; его используют как твердый смазоч­ный материал для подшипников, для защитных покрытий туго­плавких металлов от высокотемпературного окисления.

– Конец работы –

Эта тема принадлежит разделу:

Ознакомление со способами получения, составом и свойствами неметаллических конструкционных материалов, применяемых в машиностроении

Вопросы... Цели и задачи дисциплины Материаловедение и технология материалов... Связь дисциплины Материаловедение и технология материалов с другими дисциплинами...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Бескислородная керамика.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Продукты доменной плавки.
1. Исходные материалы для производства чугуна: 1.Железные руды: -красный железняк, или гематит Fе2О3; содержит в

Производство стали в электрических печах.
1.Шихтовыми материалами для выплавки стали являются жидкий или твердый чугун, стальной и чугунный лом, стружка, обрезки (скрап), железорудные окатыши, ферросплавы (перечисленные ма

Непрерывная разливка (в кристаллизатор).
  1. Выплавленная в печи сталь выпускается в ковш и разливает­ся в изложницы или кристаллизатор, либо разливке предшеству­ет рафинирование стали. Внепечное рафинирова

Производство магния. Магниевые руды. Понятие об электролитическом способе получения магния.
  1. Медь – металл красновато – розового цвета, плотностью 8940 кг/м3, с температурой плавления 1083°С. Она обладает высокой электропроводностью, теплопро­

Понятие о свойствах металлов.
1. Большое число различных металлов, кото­рые применяют в технике, можно разделить на черные и цветные. Черные металлы имеют темно-серый цвет, большую плотность, вы

Методы исследования микро- и макроструктуры металлов и сплавов, контроля качества изделий.
1.К механическим свойствам металлов относят: Прочность – это способность материала сопротивляться деформациям и раз­рушению под действием внеш­них сил.

Методы контроля качества изделий.
1.Макроанализ. Для макроанализа приготовляют образец – шлиф или излом, по которому выявляют макроструктуру – строение металла или сплава, видимое невооруженным глазом или в

Диаграммы состояния двойных сплавов. Критические точки и линии.
1.Металлическими сплавами называются соединения двух или нескольких металлов и неметаллов, у которых сохраняются металлические свойства. Сплавы можно получить сплавлением ко

Деление железоуглеродистых сплавов на стали и чугуны.
1. На диаграмме состояния (рис. 21) представлены две системы сплавов. Система Fе – Fе3С называется неустой­чивой (метастабильной) в связи с тем, что цементит представляе

Структуры, получаемые при различных скоростях охлаждения.
1.При нормальной температуре доэвтектоидные стали имеют структуру феррит плюс перлит, эвтектоидные – перлит, заэвтектоидные – перлит + це­ментит, то есть исходное состояние всех ст

Нормализация.
  1. Термической обработкой называют совокупность операций нагрева, выдержки и охлаждения металлических сплавов, находящихся в твердом состоя­нии, для изме

Отпуск. Виды отпуска.
1. Процесс закалки стали заключается в ее нагреве до определенной температуры (на 30...50° выше линии GSK по диаграмме Fe – Fe3C), выдержке и по­следующем быстром

Дефекты и брак при термической обработке.
  1. Низколегированные стали при закалке охлаждают в воде, так же как и углеродистые. Увели­чение содержания легирующих элементов в стали вызы­вает понижение теплопро

Азотирование.
1. Целью химико-термической обработки является получение по­верхностного слоя стальных изделий, обладающего повышенными твердостью, износоустойчивостью, жаростойкостью или корро

Газовое цианирование.
3. Диффузионная металлизация, её виды. 1. Цианирование.Цианирование – насыщение поверхностного слоя одновременно углеродом и азотом; оно бывает жидкостным

Влияние примесей на свойства углеродистой стали.
Наличие небольшого количества обычных примесей в стали не влияет существенно на положение критических точек и ха­рактер линий диаграммы железо – цементит, поэтому сталь можно рассматривать с извест

Углеродистые инструментальные стали.
1. По химическому составу стали подразделяют на малоуглеродистые (до 0,3% С), среднеуглеродистые (0,3...0,65 % С) и высокоуглеродистые (свыше 0,65% С). По качеству ра

Легирование чугунов, их маркировка и область применения.
1.Сталь, содержащая, кроме постоянных при­месей (марганец, кремний), один или несколько спе­циальных элементов или повышенные концентрации марганца и кремния (>1 %), называется

Цементируемые стали.
1. Низколегированные стали.Согласно ГОСТ 19282–73, установ­лено 28 марок такой стали. Они содержат 1,5…2,5 % легирующих элементов, которые определяют измельчение перлитной составля

Быстрорежущие стали.
1.Условия работы от­дельных видов инструментов различны и для различных видов инструментов применяют материалы, наиболее подходящие по своим качествам к данным условиям работы.

Прочие стали и сплавы с особыми свойствами.
1. Шарикоподшипниковые стали.Хромовая сталь с массовым содержанием 0,95…1,15 % С и 0,4…1,65 Сr образует группу высо­кокачественных шарикоподшипниковых сталей (ГОСТ 801–78) ШХ6, ШХ9

Получение металлокерамических твердых сплавов.
1. Металлокерамические твердые сплавы.Эти сплавы применяют в виде пластинок к режущему инструменту и инструменту для буров при бурении горных пород, а также в виде фильер дл

Сверхтвердые инструментальные материалы.
1. Минералокерамика – синтетический материал, основой которого служит глинозем ( А12О3), подвергнутый спеканию при температуре 1720…1750 °С. Минералокерамика

Ковкие чугуны, их свойства, маркировка и область применения.
1. Белый чугун. В белом чугуне весь углерод находится в связанном состоянии в виде карбида же­леза. Такой чугун в изломе имеет белый цвет и харак­терный металлический блеск.

Бронзы, их свойства, маркировка и область применения.
  1. Медь обладает высокой электропроводно­стью, пластичностью, коррозионной устойчивостью и спо­собна с другими металлами образовывать ряд сплавов. Для техн

Спеченные алюминиевые сплавы.
1. Алюминий и его сплавы. Характерные свой­ства алюминия – высокая пластичность, теплопровод­ность, электропроводность и малая прочность. Он слабо подвергается коррозии на воздухе,

Титан и его сплавы.
1. Механические свойства металлического магния очень невысоки, поэтому для изготов­ления деталей он не применяется. Магниевые сплавы об­ладают меньшими удельным весом, теплопроводн

Оловянные и свинцовые баббиты.
4. Металлокерамические пористые подшипниковые спла­вы, 1. Антифрикционные,илиподшипниковые сплавы применяют для изготовления подшипников.

Методы борьбы с коррозией металлов.
1.Разрушение металлов под воздействием ок­ружающей среды называют коррозией. Другими словами, коррозия – это процесс превращения металлов в окисленное состояние. Классифик

Полимеризация и поликонденсация полимеров.
1. Полимерами называют вещества, молекулы которых (макро­молекулы) состоят из большого числа повторяющихся группиро­вок, или мономерных звеньев, соединенных между собою химичес­ким

Способы получения изделий из пластмасс и их применение.
1.Пластическими массами (пластиками) на­зывают материалы, которые при определенной темпе­ратуре приобретают пластические свойства, то есть спо­собность принимать в результате пресс

Применение резиновых изделий.
1.Резинойназывают продукты химической переработки каучука и вулканизирующих веществ (сера, натрий), осуществляемой при помощи термической обработки (горячая вулканизация) ил

Применение древесины в сельхозпроизводстве.
1.Древесина используется в качестве конструкционного материала в различных отраслях промышленности как в натуральном, так и переработанном виде. Преимущества древесины:

Основные типы клеевых материалов и их применение.
1.Лакокрасочные материалы – это жидкие композиции, образующие после нанесения и высыхания пленку, соединяющуюся с окрашиваемой поверхностью. Эту пленку называют лакокрасочным покры

Фрикционные материалы.
1. Прокладочные материалы предназначены для создания герметичности сопрягаемых деталей с целью предохранения от попадания пыли, а также выте­кания смазки, газов и др. К прокладочны

Применение порошковых сплавов в ремонтном производстве
1. Сплавы, получаемые из металлических по­рошков прессованием и последующим спеканием без рас­плавления, называют порошковыми, а метод получения – порошковой металлургией.

Механическая обработка напыленных покрытий.
1.Плазменное напыление представляет собой дальнейшее развитие техники металлизации распылением. Физическое понятие «плазма» было введено в 1923 г. Лангмером для обозначения газообр

Дисперсно-упрочненные композитные материалы на алюминиевой основе.
1. Материалы сложного состава, образующиеся путем сочетания различных фаз с границей раздела между ними, называются композиционными. Композиционные материалы состоя

Органоволокниты.
  1. Карбоволокниты (углепласты) представляют собой ком­позиции, состоящие из полимерного связуюшего (матрицы) и уп­рочнителей в виде углеродных волокон (карбоволокон

Сплавы с эффектом памяти.
1. Металлические стекла, или аморфные сплавы, получают путем охлаждения расплава со скоростью, превышающей скорость кристаллизации (106…108 °С/с). В этом случ

Основные сведения об изготовлении литейной формы.
1.Процесс получения заготовок деталей ма­шин и других изделий методом литья называют литей­ным производством. Отливают заготовки массой от нескольких граммов до сотен тонн практиче

Прокатка, ее виды. Понятие о прокатном производстве.
1. Обработка давлением основана на способности металлов необратимо изменять свою форму без разрушения под действием внешних сил. Она обеспечивает получение заготовок для производст

Металлургические процессы при сварке, сварочные напряжения и деформации, причины их появления и методы предупреждения.
1. Сваркой называют процесс получения не­разъемных соединений посредством установления меж­атомных связей между свариваемыми частями при их местном (общем) нагреве или пласт

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги