рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Булева алгебра

Булева алгебра - раздел Ядерная техника, История развития компьютерной техники Чтобы Описать Схемы, Получаемые Сочетанием Различных Вентилей, Нужен Особый Т...

Чтобы описать схемы, получаемые сочетанием различных вентилей, нужен особый тип алгебры, в которой все переменные и функции могут принимать только два значения: 0 и 1. Такая алгебра называется булевой. Она названа в честь английского математика Джорджа Буля (1815-1864). На самом деле в данном случае мы говорим об особом типе булевой алгебры, а именно — об алгебре релейных схем, но термин «булева алгебра» очень часто используется в значении «алгебра релейных схем», поэтому мы не будем их различать.

Как и в обычной алгебре (то есть в той, которую изучают в школе), в булевой алгебре есть свои функции. Булева функция на входе получает одну или несколько переменных и выдает результат, который зависит только от значений этих переменных. Можно определить простую функцию F, сказав, что F(A) = 1, если А = 0, и F(А) = 0, если А = 1. Такая функция будет функцией НЕ (см. рис. 3.2, а).

Так как булева функция от n переменных имеет только 2n возможных комбинаций значений переменных, то такую функцию можно полностью описать в таблице с 2n строками. В каждой строке будет даваться значение функции для разных комбинаций значений переменных. Такая таблица называется таблицей истинности. Все таблицы на рис. 3.2 представляют собой таблицы истинности.

Если мы договоримся всегда располагать строки таблицы истинности по порядку номеров, то есть для двух переменных в порядке 00, 01, 10, 11, то функцию можно полностью описать 2n-разрядным двоичным числом, которое получается, если считывать по вертикали колонку результатов в таблице истинности. Таким образом, НЕ-И - это 1110, НЕ-ИЛИ - 1000, И - 0001 и ИЛИ - 0111. Очевидно, что существуют только 16 булевых функций от двух переменных, которым соответствуют 16 возможных 4-разрядных цепочек. В обычной алгебре, напротив, есть бесконечное число функций от двух переменных, и ни одну из них нельзя описать, дав таблицу значений этой функции для всех возможных значений входных переменных, поскольку каждая переменная может принимать бесконечное число значений.

На рис. 3.3, а показана таблица истинности для булевой функции от трех переменных: М = F(A, B, С). Это функция большинства, которая принимает значение 0, если большинство переменных равны 0, или 1, если большинство переменных равны 1. Хотя любая булева функция может быть определена с помощью таблицы истинности, с возрастанием количества переменных такой тип записи становится громоздким. Поэтому вместо таблиц истинности часто используется другой вариант записи.

 
 

 


Чтобы увидеть этот другой тип записи, отметим, что любую булеву функцию можно определить, указав, какие комбинации значений входных переменных приводят к единичному значению функции. Для функции, приведенной на рис. 3.3, а, существует 4 комбинации переменных, которые дают единичное значение функции. Мы будем рисовать черту над переменной, показывая, что ее значение инвертируется. Отсутствие черты означает, что значение переменной не инвертируется.

Кроме того, мы будем использовать знак умножения (точку) для обозначения булевой функции И (этот знак может опускаться) и знак сложения (+) для обозначения булевой функции ИЛИ. Например, AВС принимает значение 1, только если A = 1,B = 0 и С=1. Кроме того, АВ + ВС принимает значение 1, только если (А = 1 и В = 0) или (В = 1 и С = 0). В таблице на рис. 3.3, а функция принимает значение 1 в четырех строках: , , и ABC, Функция М принимает значение истины (то есть 1), если одно из этих четырех условий истинно. Следовательно, мы можем написать

М = +++ ABC.

 

Разработчики схем часто стараются сократить число вентилей, чтобы снизить цену, уменьшить занимаемое схемой место, сократить потребление энергии и т. д. Чтобы упростить схему, разработчик должен найти другую схему, которая может вычислять ту же функцию, но при этом требует меньшего количества вентилей (или может работать с более простыми вентилями, например, двухвходовыми вместо четырехвходовых). Булева алгебра является ценным инструментом в поиске эквивалентных схем.

 

– Конец работы –

Эта тема принадлежит разделу:

История развития компьютерной техники

Как представляются в компьютере целые числа.. целые числа могут представляться в компьютере со знаком или без.. целые числа без знака..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Булева алгебра

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

История развития компьютерной техники
  Нулевое поколение — механические компьютеры (1642-1945)   Первым человеком, создавшим счетную машину, был французский ученый Блез Паскаль (16

Принципы сформулированные в 1945 г. американским ученым Джоном фон Нейманом.
  1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определе

Что такое система счисления?
Система счисления — это совокупность приемов и правил, по которым числа записываются и читаются. Существуют позиционные и непозиционные системы счисления. В непози

Как порождаются целые числа в позиционных системах счисления?
В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д. Продвижением цифры называют замену её следующей по величине. Продвинуть цифр

Какие системы счисления используют
Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно: двоичная (используются цифры 0, 1); восьмер

Почему люди пользуются десятичной системой, а компьютеры — двоичной?
Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, а пальцев у людей по десять на руках и ногах. Не всегда и не везде люди пользуются десятичной систем

Почему в компьютерах используются также восьмеричная и шестнадцатеричная системы счисления?
Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи. Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Одн

Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?
Для перевода целого десятичного числа N в систему счисления с основанием q необходимо N разделить с остатком ("нацело") на q , записанное в той же десятичной системе. Затем неполное частн

Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?
Для перевода правильной десятичной дpоби F в систему счисления с основанием q необходимо F умножить на q , записанное в той же десятичной системе, затем дробную часть полученного произведения снова

Как пеpевести число из двоичной (восьмеpичной, шестнадцатеpичной) системы в десятичную?
Перевод в десятичную систему числа x, записанного в q-ичной cистеме счисления (q = 2, 8 или 16) в виде xq = (anan-1 ... a0 , a-1 a-2 ... a-m)q сводится к вычислению значения многочлена

Диапазоны значений целых чисел без знака
Формат числа в байтах Диапазон Запись с порядком Обычная запись 0 ... 28-1

Диапазоны значений целых чисел со знаком
Формат числа в байтах Диапазон Запись с порядком Обычная запись -27 ... 27

В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: прямой код, обратный код, дополнительный код.
Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cл

Сложение и вычитание
В большинстве компьютеров операция вычитания не используется. Вместо нее производится сложение обратных или дополнительных кодов уменьшаемого и вычитаемого. Это позволяет существен

Умножение и деление
Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматоро

Сложение и вычитание
При сложении и вычитании сначала производится подготовительная операция, называемая выравниванием порядков. В процессе выравнивания порядков мантисса числа с меньшим поряд

Деление
При делении двух нормализованных чисел из порядка делимого вычитается порядок делителя, а мантисса делимого делится на мантиссу делителя. Затем в случае необходимости полученный результат нормализу

Вентили
Цифровая схема — это схема, в которой есть только два логических значения. Обычно сигнал от 0 до 1 В представляет одно значение (например, 0), а сигнал от 2 до 5 В — другое значение (например, 1).

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги