Координатах

1. Если силы, действующие на частицу в разных точках пространства, направлены вдоль прямых, проходящих через одну и ту же точку, называемую центром, и зависят только от расстояния до него

,

то такое силовое поле называется центральным. Оно обладает сферической симметрией.

Помимо силовой характеристики поля существует еще энергетическая характеристика – потенциальная энергия. В центральном поле она зависит только от

.

Законы движения в поле центральной силы образуют фундамент атомной физики. Решение общей задачи о движении электронов в атоме опирается в той или иной мере на результаты движения одной квазичастицы с приведенной массой в силовом поле относительно неподвижного центра масс. Для системы электрон – ядро (в атоме водорода или в водородоподобных ионах), . Поэтому упрощенно можно считать, что квазичастица тождественна электрону, движущемуся возле неподвижного тяжелого ядра в силовом поле (в кулоновском поле).

Частным случаем центрального поля является кулоновское поле в водородоподобных атомах

.

В общем случае в центральном поле зависимость потенциальной энергии от является более сложной, чем в кулоновском поле.

Замечательной особенностью центрального поля является сферическая симметрия энергии взаимодействия, т.е. ее независимость от угловых координат. Поэтому уравнения Шредингера для центрального взаимодействия проще всего решать в сферических координатах.

2. Оператор Лапласа в сферических координатах имеет вид

.

Выражение в фигурных скобках называется оператором Лапласа на сфере

.

Таким образом, для оператора кинетической энергии в сферических координатах получаем выражение

.

Оно состоит из двух слагаемых

,

где есть оператор квадрата момента импульса, а есть

.

Оператор может рассматриваться как оператор кинетической энергии, соответствующий радиальному движению, а оператор - как оператор кинетической энергии трансверсального движения.

3. Задача заключается в нахождении стационарных состояний частицы, движущейся в поле , т.е. в отыскании решений уравнения Шредингера для стационарных состояний

. (1)

Так как операторы полной энергии и квадрата момента импульса коммутируют, то волновые функции у них должны быть общими.

Если положить

,

то, во-первых, автоматически будет выполняться уравнение

,

во-вторых, учитывая, что собственные значения оператора равны

можно получить уравнение

.

Это уравнение содержит явно только одну переменную . Поделив его на , получим уравнение для радиальной функции

. (2)

Его называют уравнением Шредингера для радиальной функции .

Вид радиальной волновой функции определяется энергией взаимодействия и потенциальной энергии электрона в поле центробежной силы. Следовательно, орбитальное квантовое число влияет на вид радиальной функции.

Возможные значения энергии определяются из уравнения (2) и зависят от вида . Они могут зависеть от величины момента импульса (через ), но не могут зависеть от проекции момента импульса . Причиной этого является сферическая симметрия силового поля, когда все направления в пространстве равноправны, и поэтому энергия не может зависеть от ориентации в пространстве момента импульса.