рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Область нижних частот и больших времен

Область нижних частот и больших времен - Конспект Лекций, раздел Приборостроение, Аналоговые электронные устройства ...

Как уже отмечалось, на область нижних частот и больших времен влияют СР и СЭ (рис. 3.3, б). Для упрощения анализа можно считать что эти конденсаторы влияют на АЧХ и ПХ независимо друг от друга, т.е., изучая влияние одного конденсатора, второй полагаем равный бесконечности (его сопротивление равно нулю). Если конденсаторы вносят небольшие искажения, то это не создает заметной ошибки.

Рассмотрим влияние разделительного конденсатора СР2 = СР, при СЭ = ¥.

Полагая g22 = 0 и применяя теорему об эквивалентном генераторе к участку цепи, лежащему левее точек а, б (рис. 3.3, б), получим эквивалентную схему на рис. 3.4.

Передаточная функция такой схемы имеет вид:

, (3.5)

где –постоянная времени разделительной цепи. Из (3.5) следует уравнение нормированной АЧХ

, (3.6)

и выражение для нижней частоты среза

. (3.7)

Таким образом, для расширения полосы пропускания в сторону нижних частот, (для уменьшения f) необходимо, увеличивать постоянную времени tР (рис. 3.5), как правило, за счет увеличения емкости разделительного конденсатора. Однако у конденсатора большой емкости мало сопротивление изоляции (утечки), а его размеры и масса возрастают и могут превышать пределы, допустимые для размещения в корпусе ИМС. Кроме того, крупный конденсатор имеет большую монтажную емкость, что ограничивает полосу пропускания в сторону верхних частот.

Подставляя (3.7) в (3.6), получим более распространенную форму записи уравнения АЧХ

(3.8)

С учетом (3.7) из (3.5) находим уравнение ФЧХ резисторного каскада в области нижних частот (рис. 3.6)

. (3.9)

Найдем уравнение ПХ. Из (3.5) следует, что

,

где – изображение нормированной ПХ. Переходя от изображения к оригиналу, получим исходное уравнение ПХ (рис. 3.7)

. (3.10)

Спад плоской вершины импульса

.

При tИ/tр<0.1 , тогда

. (3.11)

Таким образом, для уменьшения спада надо увеличивать tР , т.е. принимать те же самые меры, что и для расширения полосы пропускания в сторону нижних частот.

Из (3.7) и (3.11) следует связь между частотными и переходными искажениями

. (3.12)

Теперь рассмотрим влияние конденсатора в цепи эмиттера СЭ на АЧХ и ПХ, полагая СР = ¥.

При Сэ = ¥ других реактивностей в эквивалентной схеме (рис. 3.3, б) нет и АЧХ имеет вид прямой (идеальна!) (рис. 3.8). При СЭ = 0 за счёт RЭ возникает частотно-независимая ООС, которая уменьшает коэффициент усиления. При СЭ = const ООС нейтрализуется только в области средних частот. С понижением частоты сопротивление растет и появляется ООС (последовательная и по току), глубина которой тем больше, чем ниже частота (кривая 1). Если увеличить емкость СЭ, то ОС будет включаться позже (кривая 2), т.е. произойдет расширение полосы пропускания в сторону нижних частот.

Для получения расчетных соотношений обобщенным методом узловых потенциалов определяем y-параметры четырехполюсника, обведенного на рис. 3.3,б штриховыми линиями

, (3.13)

где , , Sg = g11+ g12+ g21+ g22.

Подставляя (3.13) в (3.1), после несложных преобразований получим

. (3.14)

Здесь

(3.15)

- глубина ООС, возникающая за счет конечного значения емкости конденсатора в цепи эмиттера (рис. 3.9). Из (3.14) и (3.15) находим уравнение АЧХ каскада при СР

(3.16)

Если на частоте fН допустимый уровень частотных искажений не должен превышать уН, то величина емкости СЭ выбирается из соотношения

.

На рис. 3.10 приведены ПХ каскада в области больших времен в предположении, что СР = ¥. При СЭ = ¥ и СЭ = 0 ПХ – идеальны. Прямая 2 проходит ниже, т.к. в этом случае . При СЭ=10 мкФ при скачкообразном изменении напряжения u1(t) напряжение на емкости не может измениться скачком и , по мере заряда емкости СЭ напряжение будет уменьшаться, стремясь к прямой 2. При СЭ = 50мкФ скорость заряда ёмкости СЭ уменьшится (кривая 4), а значит уменьшится скорость спадания напряжения uБЭ(t) (уменьшится спад плоской вершины).

При ,

. (3.17)

 

– Конец работы –

Эта тема принадлежит разделу:

Аналоговые электронные устройства

АНАЛОГОВЫЕ ЭЛЕКТРОННЫЕ УСТРОЙСТВА. ЧАСТЬ II. Конспект лекций для студентов специальности “Радиотехника” всех форм обучения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Область нижних частот и больших времен

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные понятия
Рис.1.1. Общая схема АЭУ с обратной связью

Влияние ОС на передаточные свойства
устройства Основное назначение ОС – передача сигнала с выхода устройства на его вход. Кроме того, существует и побочное (как правило нежелательное) влияние ОС на параметры и характ

Влияние обратной связи на входное и выходное сопротивления
Влияние ОС на входное сопротивление зависит от знака, глубины и способа подачи ОС на вход устройства и не зависит от способа снятия ОС с его выхода. Для получения количественных со

Влияние обратной связи на стабильность коэффициента передачи
В рабочих условиях коэффициент передачи любого устройства не остается постоянной величиной, так как на него воздействуют такие дестабилизирующие факторы как изменение напряжения питания, колебания

Влияние обратной связи на амплитудно-частотную, фазочастотную и переходную характеристики
Применение ОС позволяет существенно уменьшить уровень линейных искажений, т.е. улучшить формы АЧХ, ФЧХ и переходной характеристики. В данном разделе мы ограничимся качественным рассмотрением влияни

Влияние обратной связи на внутренние помехи
Внутренние помехи усилителя ограничивают тот минимальный сигнал, который может быть усилен усилителем без заметных искажений, т.е. ухудшают чувствительность усилителя. Введение ООС привод

Влияние обратной связи на нелинейные искажения
Введение ООС позволяет уменьшить нелинейные искажения, возникающие в усилителе. Физически это можно объяснить тем, что посторонние составляющие выходного напряжения или тока – гармоники и комбинаци

Устойчивость устройств с обратной связью
Как уже отмечалось в разд.1.1 ООС широко используется в АЭУ для улучшения параметров и характеристик этих устройств. Из-за фазовых сдвигов, вносимых устройством и ЦОС ООС может оказаться положитель

Режимы работы и цепи питания усилительных элементов
  2.1. Режимы работы усилительных элементов 2.1.1. Режим А УЭ в каскаде может работать в различных режимах по постоянному току. Произв

Режим В
Режимом В называют такой режим, при котором ток в выходной цепи УЭ существует в течение половины периода сигнала.    

Режим С
В режиме С, так же как в режиме В, УЭ работает с отсечкой выходного тока. Причем угол отсечки q < p/2. Для этого рабочая точка должна располагаться левее точки пересечения спря

Режим D
В режиме D УЭ работает как электронный ключ, т.е. УЭ или закрыт, или открыт. В первом случае через УЭ протекает незначительный ток, а во втором мало падение напряжения на нем. Поэтому и

Температурная нестабильность режима биполярного транзистора
Температурная нестабильность режима биполярного транзистора (БТ) в основном определяется тремя факторами: изменение обратного тока коллекторного перехода

Температурная нестабильность режима полевого транзистора
Как у всех приборов, построенных на основе полупроводниковых структур, свойства полевого транзистора (ПТ), а значит и его режим работы зависит от температуры. С увеличением температуры ум

Методы стабилизации
Существуют два метода стабилизации режима работы УЭ: - параметрический (компенсация температурных изменений); - автоматический (при помощи ООС). В первом

Обобщенная схема задания и стабилизации рабочей точки
Конкретные схемы задания и стабилизации рабочей точки, которые будут рассмотрены ниже, явл

Схема эмиттерной стабилизации
Схема эмиттерной стабилизации (рис.2.10) является самой распространенной схемой. Стабилизация осуществляется за счет последовательной ООС по току, возникающей из-за наличия в схеме резистора

Схема коллекторной стабилизации
В этой схеме (рис. 2.11) стабилизация осуществляется за счет параллельной ООС по напряжени

Цепи питания с фиксацией напряжения на затворе
Для получения требуемого (фиксированного) напряжения на затворе применяют делитель напряжения

Схемы истоковой стабилизации
Эти схемы (рис.2.13) обладают лучшей стабильностью, чем цепи на рис. 2.12, так как за счет

Генераторы стабильного тока
Рассмотренные в предыдущих разделах автоматические способы стабилизации режима в аналоговых интегральных микросхемах (ИМС) не желательны, так как они требуют применение высокоомных резисторов, зани

Особенности каскадов предварительного усиления
Назначение каскадов предварительного усиления (КПУ) – повышение уровня входного сигнала до значения, при котором обеспечивается нормальное возбуждение мощного выходного каскада. Поэтому

Принципиальная и эквивалентная схемы
Достоинством резисторного каскада кроме простоты и малых размеров, является способность создавать равномерное усиление в широкой полосе частот и нечувствительность к воздействию переменных магнитны

Область средних частот
Для любого линейного четырёхполюсника коэффициент передачи по напряжению (табл. 4.1 в [1])

Область верхних частот и малых времен
Эквивалентная схема каскада для этого диапазона частот (времен) приведена на рис. 3.3, в. Подставляя (3.2) в (3.1) и учитывая, что

Схема эмиттерной высокочастотной коррекции
Схема такой ВЧ коррекции приведена на рис. 3.13. Здесь RКОР, СКОР – корректирующие элементы, RЭ, СЭ – элементы схемы эмиттерн

Схема индуктивной высокочастотной коррекции
   

Схема низкочастотной коррекции
НЧ коррекция чаще всего осуществляется постановкой RФCФ - фильтра в цепь питания (рис. 3.19). АЧХ для разных значений СФ изображены на рис.

Принцип действия
Пусть на вход ДК, симметрично относительно оси А-А¢ (рис. 3.22), поступают синфазные сигналы (СС), т.е. сигналы, амплитуды и фазы которых совпадают.

Параметры дифференциального каскада
Входное сопротивление для ДС (RВХ) – это сопротивление между полюсами 1–0 (рис. 3.24). Со стороны источника сигнала VT1 включён по схеме ОК с нагрузкой

Резисторный каскад на составном транзисторе
   

Усилительные каскады с
динамическими нагрузками Повышение коэффициента усиления любого кас

Устойчивость многокаскадного усилителя постоянного тока
Пусть многокаскадный УПТ на нулевой частоте охвачен частотно-независимой (В=const) ООС. За счет дополнительных фазовых сдвигов в области верхних частот ООС переходит в положительную и при возвра

Условия устойчивости операционных усилителей
Пусть двухкаскадный ОУ в области нижних частот () охвачен частотно-независимой (B=const)

Косвенные признаки относительной устойчивости
Запас устойчивости по фазе Y характеризует относительную устойчивость ОУ с ОС, т.е. удале

Влияние емкости нагрузки и входной емкости на устойчивость ОУ
Пусть ОУ без ОС является системой первого порядка, т.е. его АЧХ не имеет изломов и спадает со скоростью –20дБ/дек. Если ОС частотно-независимая, то порядок возвратного отношения также будет первым

Частотная коррекция в цепи ОС
Из разд.4.5 следует, что наличие и

Включим конденсатор малой емкости С в цепь ОС (рис.4.13,а), тогда
       

Инвертирующий усилитель
Инвертирующий усилитель (ИУ) – это усилитель, обладающий стабильным (наперёд заданным) коэффициентом усиления с разностью фаз между входным и выходным сигналами 180°. ИУ является о

Неинвертирующий усилитель
Неинвертирующий усилитель (НУ) – это усилитель, обладающий стабильным коэффициентом усиления при нулевой разности фаз между входными и выходными сигналами.

Суммирующий усилитель
Суммирующий усилитель (сумматор) суммирует сигналы, подаваемые на вход. Сумматор представляет собой расширение инвертора напряжения путём подключения к инвертирующему входу ОУ допо

Дифференциальный усилитель
Дифференциальный усилитель (ДУ) предназначен для усиления разности двух входных напряжений (рис. 5.9). Стабилизация коэффициентов усиления ДУ так же, как и для инвертир

Дифференциатор
Дифференциатор (ДФ) – это устройство, у которого выходной сигнал пропорционален производной по времени от входного сигнала

Логарифмирующие и антилогарифмирующие усилители
Логарифмирующий усилитель (ЛУ) – это устройство, у которого выходная переменная, например напряжения, пропорциональна логарифму входной переменной. ЛУ используются при сжатии (

Перемножители с переменной крутизной
Идея этого метода проста: один сигнал изменяет крутизну активного элемента, который усиливает другой входной сигнал. В результате выходное напряжение схемы будет пропорционально произведению входны

Интегральные перемножители и их параметры

Особенности применения интегральных перемножителей
   

Назначение, параметры
Компараторы являются простейшими аналого-цифровыми преобразователями (АЦП), т.е. устройствами, преобразующими непрерывный сигнал в дискретный.Они предназначены для сравнения входного сиг

Особенности применения полупроводниковых компараторов
Компараторы, получившие наибольшее распространение, можно разделить на четыре группы: общего применения (К521СА2, К521СА5) , прецизионные (К521СА3, К597СА3), быстродействующие (К597СА1, К597СА2) и

Специализированные компараторы на операционных усилителях
При сравнении низкочастотных сигналов с высокой точностью (десятки микровольт) при минимальной потребляемой мощности использование компараторов на базе ОУ часто оказывается более предпочтительное,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги