Перемножители с переменной крутизной

Идея этого метода проста: один сигнал изменяет крутизну активного элемента, который усиливает другой входной сигнал. В результате выходное напряжение схемы будет пропорционально произведению входных сигналов. Этот метод основан на использовании экспоненциальной зависимости тока через p-n переход от напряжения.

Рассмотрим работу и оценим основные параметры ПН, построенного на дифференциальном каскаде (рис. 6.3), которые реализует этот метод.

Эмиттерные токи транзисторов VT1, VT2 определяются выражением:

, (6.2)

где Iэбо – начальный ток эмиттерного перехода, jк=kT/q– температурный потенциал. При t=.250C, jк=25,69мB Если exp(Uбэ/jк)>>1, то крутизна этих транзисторов g.21=dIЭ/dUэб»IЭ/jк При идеальном согласовании параметров транзисторов VT1 и VT2 имеем:

DIэ1»(Iу/2jк) DUэб1, DIэ2»(Iу/2jк) DUэб2,
где Iу = Iэ1 + Iэ2 .

Переходя от эмиттерных токов к коллекторным , находим разность коллекторных напряжений этиx транзисторов DUк=DIк1R3 -DIк2 R3=(Iу/2jк) R3Ux

Учитывая, что , получим

.

Напряжение усиливается дифференциальным усилителем, построенным на ОУ. Поэтому

. (6.3)

Данная схема обладает существенными недостатками.

1. Выходное напряжение зависит от – параметра с низкой температурной стабильностью.

2. Уже при Ux > 10 мВ начинает сказываться нелинейная зависимость (6.2), что приводит к возникновению существенных нелинейных искажений и к ограничению динамического диапазона ПН.

Для решения проблемы температурной стабилизации и нелинейных искажений было предложено простое и эффективное решение (рис. 6.4). В этой схеме для компенсации экспоненциальной зависимости эмиттерных токов транзисторов VT1 и VT2 от напряжения Uбэ (6.2) используются логарифмические свойства диодов VD1 и VD2 (или транзисторов в диодном включении). Из рис. 6.4 следует, что

,

или . (6.4)

Но , (6.5)

, (6.6)

где Iдo – начальный ток через диод. Подставляя (6.5) и (6.6) в (6.4), получим

.

Если транзисторы и диоды образуют со-гласованные пары, т.е. Iд01 = Iд02 и Iэб01 = Iэб02, то ln(Iд1/ Iд2)= ln(Iк1/ Iк2). Значит:

Iд1/ Iд2= Iк1/ Iк2 (6.7)

Таким образом, отношение выходных токов прямо пропорционально отношению входных токов независимо от температуры или величины этих токов. Другими словами, данная схема (с учетом сделанных допущений) является линейной и обладает идеальной температурной стабильностью.

Если сигнал на входе X есть разность токов диодов VD1 и VD2 (рис. 6.4), а выходной сигнал – разность коллекторных токов транзисторов VT1 и VT2, то можно показать, что при

(6.8)

Из (6.8) следует, что ток Iх, т.е. ток, протекающий через диоды VD1 и VD2 при отсутствии напряжения на входе X, является для двухквадрантного ПН (двухполярный вход X и однополярный вход Y) масщтабным коэффициентом.

Данная схема обладает рядом преимуществ по сравнению с ПН на обычном дифференциальном усилителе (рис. 6.3).

1.Имеет более широкую полосу пропускания (1-10 МГц).

2.Обладает лучшей линейностью (более широким динамическим диапазоном). Сигнал по входу X можно варьировать в пределах , сохраняя линейность ПН.

3.Имеет более высокую температурную стабильность, так как согласно (6.8) связь между сигналами на входе и выходе не зависит от температуры. В практических схемах эта зависимость существует (за счет, например, температурных изменений h21). Однако, если в схеме на рис. 6.3 масштабный коэффициент меняется на 0,3% на С, то в данной схеме на порядок меньше (около ).

В силу перечисленных достоинств линеаризированная усилительная схема (рис. 6.4) стала применяться в качестве функционального узла в ПН широкого применения.

Чтобы на базе этой схемы создать ПН, необходимо кроме УИТ по входу Y следует предусмотреть УИТ и по входу X, т.е.

. (6.9)

Таким образом, для получения линейной зависимости Uвых от Uх необходимо предварительно напряжение Ux преобразовать в ток, а затем этот ток прологарифмировать с помощью диодов VD1 и VD2. В результате будем иметь логарифмическую зависимость входного напряжения дифференциального усилителя от Ux и линейную зависимость Uвых от Uх.

Учитывая (6.8) и (6.9), получим

,

. (6.10)

Масштабный коэффициент ПН k устанавливается заданием величины которая имеет необходимую размерность (В-1).

 
 

Рассмотрим принцип действия и особенности схемного решения реального двухквадрантного ПН с переменной крутизной (рис. 6.5). В основу этой схемы положена линеаризированная усилительная схема (рис. 6.4). Дифференциальный усилитель реализован на транзисторах VT1 и VT2. Роль диодов VD1 и VD2 (рис. 6.4) в этой схеме играют транзисторы VT3, VT4 в диодном включении. УИТ по входу Y выполнен на ОУ A1, охваченном с помощью элементов R2 и VT5 параллельной ООС по току. Благодаря чему расширяется диапазон линейной зависимости тока Iу от напряжения Uу вплоть до Uу = 0. Если у VT5 h21 >> 1, то Iу=Uу/R5, т.е. 1/R5.

УИТ по входу X реализован на дифференциальной паре VT6, VT7, стабильность их режима работы по постоянному току обеспечивается транзисторами VT8 и VT9.

Если Uу = 0, то VT5 заперт и выход практически отсоединен от входа X, ослабление сигнала по этому входу не хуже 80 дБ. Однако, при уменьшении сигнала Uу падают токи транзисторов VT1, VT2 , что приводит к сужению полосы пропускания схемы.