Параллельное соединение трубопроводов

Отличительной особенностью таких трубопроводов является то, что поток жидкости делится в одной точке на несколько самостоятельных потоков, которые позже сходятся в другой точке. Каждый из этих потоков может содержать свои местные сопротивления. Наиболее часто возникающей задачей, связанной с расчётом таких трубопроводов, является определение расхода в каждой ветви. Рассмотрим движение жидкости по этим трубопроводам, считая, что потенциальная энергия положения много меньше потенциальной энергии сжатия, которая определяется давлением, и ею можно пренебречь. Если считать, что в местах разветвления и соединения трубопроводов, обозначенных буквами н и к, расход одинаков, а давления равны и , то можно записать:

и

где 1, 2, 3 – номера параллельных ветвей трубопровода,

Q1, Q2, Q3 – расходы в соответствующих ветвях,

ΔP1, ΔP2, ΔP3 – потери давления в соответствующих ветвях.

Представляя каждую из параллельных ветвей как простой трубопровод, можно записать характеристики каждой ветви:

, , .

На основании этих равенств можно получить уравнения вида:

, и .

Добавим к этим уравнениям условие равенства расходов в начале и конце разветвлённых трубопроводов и будем иметь:

.

В итоге получилась система уравнений, из которой при известной подаче жидкости от источника энергии и известных гидравлических сопротивлениях параллельно соединённых трубопроводов можно определить расходы в каждом из них. Подобную систему уравнений можно записать для любого числа параллельно соединённых труб.

Из приведённых уравнений вытекает следующее важное правило: для построения характеристик параллельного соединения нескольких трубопроводов следует сложить абсциссы (расходы) характеристик каждого из этих трубопроводов при одинаковых ординатах (потерях давления).

Разветвлённые трубопроводы

Разветвлённые трубопроводы отличаются тем, что они имеют одну общую точку, из которой расходятся разные потоки, или общую точку, в которой несколько разных потоков сходится. Этот вариант наиболее часто встречается в гидросистемах технологического оборудования, где от одной насосной станции питается сразу несколько одновременно работающих потребителей. Для разветвлённых трубопроводов, так же как и для параллельных, можно записать уравнение расходов

,

где - расходы в соответствующих ветвях.

Составим также уравнение Бернулли для любой из ветвей. Будем считать: давление в трубопроводе таково, что нивелирной высотой можно пренебречь. Примем также, что давление в конце каждой ветви (в сечении к), необходимое для преодоления нагрузки, равно . Уравнение Бернулли для сечений н и к будет выглядеть следующим образом:

,

где i – индекс, соответствующий определённой ветви.

Если считать, что рассматриваемая система трубопроводов принадлежит гидросистеме технологической машины, в которой давления в различных ветвях, как правило, составляют несколько мегапаскалей, а скорости течения жидкости по трубам чаще всего невысокие (до5 м/c), скоростным напором можно пренебречь. В самом деле, например, при скорости 1 м/c и коэффициенте кинетической энергии α равным 2, величина скоростного напора составит 0,1 м, что при переводе в единицы давления равно 0,001МПа. С учетом этого и после обычных преобразований получим

.

Величина , в данном случае, представляет собой характеристику простого трубопровода и равна . Таким образом, для каждой ветви разветвлённого трубопровода можно написать подобное уравнение. Если добавить к ним уравнение расходов, то можно получить систему уравнений вида

.

Подобную систему уравнений можно записать для любого числа ветвей разветвлённого трубопровода. Решая её, можно определить, какой расход и какое давление должен обеспечивать источник гидравлической энергии, чтобы на выходе трубопроводов получалось заданное давление при заданном расходе.