Инструментальная погрешность

Инструментальная погрешность результата осциллографического измерения складывается из статической (при постоянном или низ­кочастотном входном сигнале) и динамической составляющих.

Статическая погрешность. При измерении как амплитудных, так и временных параметров можно использовать общий подход к оценке погрешностей. Поскольку подавляющее большинство слу­чаев применения ЭЛО основано на измерении длин линейных от­резков (например, при измерении амплитуды и периода сигнала, длительности импульса), то наличие систематических аддитивных погрешностей каналов Y и X не приводит к погрешностям результатов, так как определяет лишь сдвиг изображения на экране.

Мультипликативные же погрешности каналов в большинстве случаев влияют на результат измерения, так как искажения ли­нейных параметров изображения на экране при этом линейно за­висят от значения входной величины. Пределы допустимых отно­сительных мультипликативных погрешностей каналов Y и X назы­ваются погрешностями коэффициентов отклонения и задаются количественно, например, так: δY = ±5%; δX = ±2%. Эти значения характеризуют только статическую (или низкочастотную) погреш­ность воспроизведения сигналов каналами.

Динамическая погрешность. Входные каналы ЭЛО не в состоя­нии воспринимать («пропускать») высокочастотные сигналы в бес­конечно широкой полосе частот. Есть естественные ограничения. Полоса частот, которую пропускает канал ЭЛО (т.е. позволяет нор­мально исследовать), зависит от схемотехники и элементной базы его каналов. Понятно, что чем шире полоса частот, тем лучше. Ее граница определяется верхней частотой fв, полосы пропускания.

К характеристикам ЭЛО, определяющим динамическую погреш­ность, относятся:

• амплитудно-частотная характеристика (АЧХ) и значение верх­ней границы fв полосы пропускания по каналам Y и X,

• время нарастания τн переходной характеристики канала Y;

• время установления τу;

• неравномерность АЧХ канала Y;

• фазочастотная характеристика (ФЧХ) канала Y.

Рассмотрим основные из этих характеристик на примере ка­нала Y.

Рассмотрим, как прак­тически определяется реальная АЧХ канала Y (рис. 4.17).

Рис.4.17. Экспериментальное определение АЧХ канала Y ЭЛО

На вход канала Y ЭЛО подается синусоидальный сигнал от высокочастотного генератора, частота которого может регулиро­ваться в широких пределах (верхняя граница диапазона изменения частоты должна быть не менее верхней границы fв полосы пропус­кания исследуемого ЭЛО). Затем, изменяя (поочередно задавая несколько разных значений) частоту сигнала генератора и под­держивая (с помощью показаний широкополосного электронного вольтметра) амплитуду сигнала постоянной, фиксируют ампли­туду изображаемого на экране сигнала. Таким образом, можно по­строить по некоторому множеству точек кривую АЧХ канала. При­мер АЧХ канала Y ЭЛО показан на рис. 4.18.

Рис. 4.18. Амплитудно-частотная характеристика канала Y

По оси абсцисс отложены значения относительной частоты f / fв сигнала, т. е. отношение частоты входного сигнала f к верхней гра­нице полосы пропускания fв канала (границе его частотного диа­пазона). По оси ординат (слева) отложена относительная ампли­туда υ изображения сигнала по осциллограмме υ = h / h0 , где h амплитуда сигнала по осциллограмме (изображению) на конкретной частоте, h0– амплитуда по осциллограмме при низкой часто­те входного сигнала (или при постоянном напряжении).

Верхняя граница fв полосы пропускания (для канала с открытым входом) определяется по уровню уменьшения отно­сительной амплитуды на –3 дБ и задается в паспорте на ЭЛО (на­пример, так: fв = 10 МГц). Зная АЧХ, можно определить погреш­ность воспроизведения на экране амплитуды синусоидального сиг­нала известной частоты. Например, при частоте входного сигнала f = 5 МГц и значении fв = 10 МГц погрешность воспроизведения амплитуды синусоидального сигнала на экране составит прибли­зительно – 10% (см. рис. 4.18).

Время нарастания τн переходной характеристики канала и вре­мя установления τу характеризуют реакцию ЭЛО на скачкообраз­ные (импульсного характера) изменения входного сигнала. Время нарастания τн определяется интервалом времени изменения сиг­нала на экране от 0,1 Umax до 0,9 Umax амплитудного значения сигна­ла Umax (рис. 4.19, а).

Рис. 4.19. Определение времени нарастания (а) и времени установления (б)

Время установления τу определяется интервалом от 0,1Umax до вхождения сигнала в заданную зону ±D (например, ±5 % от Umax, рис. 4.19, б).

На практике значения времен нарастания τн и установления τу канала Y определяются следующим образом.

На вход канала Y ЭЛО пода­ется сигнал от генератора пря­моугольных импульсов. Длитель­ность фронта выходного сигна­ла генератора должна быть замет­но меньше ожидаемого времени нарастания и времени установ­ления канала исследуемого ЭЛО. Затем, измерив указанные пара­метры осциллограммы сигнала,

определяют искомые значения времен нарастания τн и установ­ления τу.

Неравномерность АЧХ канала и фазочастотная характеристика (ФЧХ) канала Y определяют в основном искажения формы неси­нусоидальных входных сигналов.