рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ОЦЕНКА ПОГРЕШНОСТЕЙ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

ОЦЕНКА ПОГРЕШНОСТЕЙ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ - раздел Приборостроение, Электронно-лучевой осциллограф Наиболее Часто Используются Два Режима Формирования Изображения Y - ...

Наиболее часто используются два режима формирования изображения Y - t; Y-X. Рассмотрим вопросы оценки погрешностей результатов измерений в этих режимах.

4.4.1. Режим линейной развертки (режим Y - t)

В случае осциллографических измерений значения амплитудных и временных параметров сигнала находят по его изображению на экране (т.е. по осциллограмме) посредством определения paзмеров линейных отрезков. Поэтому, во избежание значительный погрешностей, важно выбирать оптимальные значения коэффициентов отклонения по каналам Y и X, т.е. такие, при которых интересующий нас параметр представляется отрезком наибольшей возможной (в пределах сетки экрана) длины. Чем меньше размер нужного параметра на осциллограмме, тем хуже, так как тем больше относительная погрешность его определения.

Проиллюстрируем это примером расчета предельных инструментальных и субъективных погрешностей результата измерения временных параметров. Пусть по изображению периодического сигнала требуется определить значения длительности импульса τи и периода повторения T импульсной последовательности (рис. 4.28, а), а также оценить инструментальные погрешности результатов.

Рис. 4.28. Выбор коэффициента отклонения по оси X (скорости развертки)

а – 200 мкс/дел; б – 50 мкс/дел.

Известны значения коэффициента отклонения по оси X (скорости развертки) KX1 = 200 мкс/дел. и его относительная погрешность δX1 = ±3 %.

Результат измерения периода T (см. рис. 4.28, а):

Т= 6,5 дел.·200 мкс/дел. = 1300 мкс.

Инструментальная статическая Dи и субъективная (отсчитывания) Dс составляющие общей погрешности D результата измере­ния периода T равны, соответственно:

Dи = (δX1 / T) = (±3·1300)/100 = ±39 мкс;

Dс = ±2(0,1·дел.) = ±2(0,1·200) = ±40 мкс.

Окончательная запись результата измерения периода Т в этом эксперименте выглядит следующим образом:

Т= 1300 мкс; D = ±79 мкс; рдов = 1.

Результат измерения длительности импульса τи1 на этой (пер­воначально выбранной) скорости развертки (см. рис. 4.28, а) оп­ределяется следующим образом:

τи1 = 1,3·200 = 260 мкс.

Инструментальная Dи1 и субъективная Dс1 составляющие, а так­же общая абсолютная погрешность измерения D1 в этом (первом) измерении равны, соответственно:

Dи1 = (δX1 τи1)/100 = (±3·260)/100 = ±7,8 мкс;

Dс1 = ±2(0,1 · дел.) = ±2(0,1·200) = ±40 мкс;

D1= ±47,8 мкс.

Предельное значение суммарной относительной погрешности измерения длительности импульса δ1 при этом составит:

δ1 = (D·100)/ τи1 = ±(47,8·100)/260 ≈ ±18,4 %.

Такое значение погрешности может оказаться недопустимо большим. В этом случае целесообразно для повышения точности измерения длительности импульса перейти на другой коэффици­ент отклонения (развертки), например, изменить на коэффициент KХ2 = 50 мкс/дел. (рис. 4.28, б). Предположим, что погрешность δX2 при этом значении коэффициента отклонения (на этом диапазоне развертки) отличается от предыдущего и равна δX2 = ±4 %. В этом эксперименте (см. рис. 4.28, б) результат измерения длительности импульса τи2 составит, допустим:

τи2 = 5,1 · 50 = 255 мкс.

Предельные значения инструментальной Dи2 и субъективной Dс2 составляющих, а также общие абсолютная D2 и относительная δ2 погрешности измерения в этом (втором) измерении соответственно равны:

Dи2 = (δX2 · τи2)/100 = ±(4 · 255)/100 = ±10,2 мкс;

Dс2 = ±2(0,1 ·дел.) = ±2(0,1 · 50) = ±10 мкс;

D2 = ±20,2 мкс; δ2 = (D2· 100) / τи2 = ±(20,2 · 100)/255 = ±7,9 %.

Окончательная запись результата измерения длительности им­пульса тн2 (во втором эксперименте) выглядит следующим обра­зом:

τи2 = 255 мкс; D2 = ±20 мкс; рдов = 1.

При измерении амплитудных и временных па­раметров надо всегда стремиться выбирать такие значения коэф­фициентов отклонения по осям, при которых искомые парамет­ры были бы представлены возможно большими линейными отрезками на экране.

Отметим, что при нахождении некоторых временных парамет­ров (например, периода сигнала) динамические характеристики канала Y практически не влияют на результат.

4.4.2. Режим YX

Подход к оценке погрешности результата в этом режиме также имеет определенную специфику. Рассмотрим ее на примерах использования метода фигур Лиссажу и метода эллипса.

При измерении частоты методом фигур Лиссажу (одной из peaлизаций метода сравнения) ЭЛО выступает в необычной (нехарак­терной) роли – в качестве нулевого индикатора, показывающего удобное соотношение частот. Погрешности коэффициентов откло­нения (в том числе нелинейность) и погрешности отсчитывания по обеим осям при этом не имеют значения, так как не масштабы и не J пропорции изображения определяют результат, а соотношение конеч­ных чисел (точек пересечения фигуры мысленными секущими).

Погрешность результата при неподвижном изображении oпределяется только погрешностью задания известной (образцовой) частоты генератора. Если, например, сигнал неизвестной часто­ты подан на вход X ЭЛО, а выход генератора подключен ко входу Y, и изменением частоты его напряжения получена устойчивая фигура, то абсолютная погрешность результата измерения связа­на с абсолютной погрешностью задания частоты генератора тем же соотношением, что и частоты. Относительная погрешность оп­ределения неизвестной частоты совпадает с относительной погрешностью частоты гене­ратора. Допустим, неподвижное изображение фигуры Лиссажу (рис. 4.33) получено при ча­стоте сигнала генератора, поданного на вход Y, fY = 1040 Гц. Относительная погрешность задания этой частоты δY = ±1 %.

Рис. 4.33. Погрешность определения частоты

Соотношение числа точек пересечения фигуры вертикальной и горизонтальной секущими Nв/Nг = 6/4, т.е. значение неизвестной частоты fX на входе X равно:

fX = fY (Nв/Nг) = 1560 Гц.

Значения абсолютной погрешности частоты генератора DY и абсолютной погрешности DX определения неизвестной частоты fX равны соответственно:

DY = (δY fY) / l00 = (±1 · 1040)/100 = ±10,4 Гц;

DX =DY (Nв/Nг) ±10,4· (6/4) = ±15,6 Гц.

Относительные погрешности частоты генератора fY и оценки неизвестной частоты fx равны: δY = δХ = ±1 %.

Запись окончательного результата данного эксперимента вы­глядит так:

fx= 1560 Гц; Дл-=±16 Гц; рдов = 1.

Погрешность измерения сдвига фаз методом эллипса, в отли­чие от предыдущего случая, зависит от характеристик каналов ЭЛО. Аддитивные и мультипликативные составляющие погрешностей каналов Y и X в этом режиме не влияют на результат, так как длины отрезков а и b (или отрезков с и d) в выражении для опре­деления φ (см. подразд. 4.2):

φ = arcsin(a/b)= arcsin(c/d)

не зависят от аддитивного смещения, а пропорциональное изме­нение их размеров не меняет отношения их длин (a/bили c/d).

Таким образом, погрешность результата измерения в методе эллипса определяется только погрешностями линейности и раз­ностью фазовых сдвигов Dφ усилителей каналов Y и X.

Рассмотрим влияние разности фазовых сдвигов Dφ на погреш­ность измерения. Если бы у обоих каналов фазовые сдвиги были одинаковыми (неважно какими конкретно), то Dφ была бы равна нулю, и при одновременной подаче на оба входа одного и того же синусоидального сигнала на экране возникло бы изображение отрезка прямой линии (рис. 4.34, а). У реального ЭЛО имеет место неравенство фазовых сдвигов, поэтому в этом случае вместо отрезка прямой на экране будет небольшой (узкий) эллипс (рис. 4.34, б).

4.34. Погрешность определения фазового сдвига при их равенстве у обо­их каналов и неравенстве: а, в, г - идеальный случай; б, г - реальный случай

Вследствие этого в реальном измерительном эксперименте по оценке фазового сдвига φ между исследуемыми сигналами мы по лучим на экране эллипс (рис. 4.34, в), размеры которого не будут соответствовать идеальным, а будут отражать сумму искомого фазового сдвига φ и разности Dφ (т.е. быть несколько большими). Длина отрезка ср на реальной осциллограмме будет больше, чем в идеальном случае си, что и приведет к погрешности измерения фазового сдвига φ (рис. 4.34, г). При желании эту погрешность можно оценить перед экспериментом и затем скорректировать результат.

– Конец работы –

Эта тема принадлежит разделу:

Электронно-лучевой осциллограф

Электронно лучевой осциллограф устройство электронно лучевого.. метрология осциллографических измерении.. общая погрешность результата измерения выполненного с по мощью осциллографа содержит те же составляющие что и..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ОЦЕНКА ПОГРЕШНОСТЕЙ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

УСТРОЙСТВО ЭЛЕКТРОННО-ЛУЧЕВОГО ОСЦИЛЛОГРАФА
Класс осциллографов сегодня может быть поделен на две силь­но различающиеся группы: аналоговые (электронно-лучевые и светолучевые) и цифровые. Каждая из этих групп имеет свои функци­ональные возмож

Электронно-лучевая трубка
Конструктивно электронно-лучевая трубка (ЭЛТ) – основной элемент ЭЛО – представляет собой стеклянный баллон с глубо­ким вакуумом, в который встроены металлические электроды (рис. 4.2)

Двухканальные электронно-лучевые осциллографы
Довольно широко распространены сегодня двухканальные (двухлучевые) осциллографы, которые имеют более широкие возможно­сти, так как позволяют одновременно исследовать два разных проте­кающих процесс

ФОРМИРОВАНИЕ ИЗОБРАЖЕНИЙ НА ЭКРАНЕ ЭЛЕКТРОННО-ЛУЧЕВОЙ ТРУБКИ
Если и на пластины Y, и на пластины X 'поступают изменяющие­ся во времени сигналы, то траектория движения светящегося пятна на экране будет определяться характером поведения эт

Инструментальная погрешность
Инструментальная погрешность результата осциллографического измерения складывается из статической (при постоянном или низ­кочастотном входном сигнале) и динамической составляющих.

Погрешность взаимодействия
В осциллографических измерениях, как и в других измерениях, присутствует погрешность взаимодействия прибора с объектом исследования (ОИ) – источником сигнала, которая определяется соотношением выхо

Субъективная погрешность
Как известно, субъективная погрешность может складываться в общем случае из погрешности отсчитывания и грубой ошибки (про­маха). Промах непредсказуем и поэтому не может быть заранее оценен.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги