рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Газовая хроматография

Газовая хроматография - раздел Приборостроение, АНАЛОГОВЫЕ И ЦИФРОВЫЕ ЭЛЕКРОННЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ПРЕОБРАЗОВАТЕЛИ Газовая Хроматография – Метод Разделения Летучих, Тер...

Газовая хроматография метод разделения летучих, термостабильных соединений. Этим требованиям отвечает около 5% известных органических соединений, но именно эти соединения оставляют 70-80 % соединений, которые использует человек в сфере производства и быта. Подвижной фазой служит инертный газ (газ-носитель), протекающий через неподвижную фазу, имеющую большую поверхность.

В качестве подвижной фазы можно использовать водород, гелий, азот, аргон и углекислый газ. Наиболее часто используют азот, как более доступный и дешевый. Газ-носитель обеспечивает перенос разделяемых компонентов по хроматографической колонке и не взаимодействует ни с разделяемыми веществами, ни с неподвижной фазой.

Достоинствами газовой хроматографии являются:

сравнительная простота аппаратурного оформления;

весьма широкие границы применимости (можно определять соединения, для которых достигается давление насыщенного пара 0,001-1 мм рт.ст.);

возможность определения с высокой точностью малых количеств газов органических соединений с высокой точностью;

быстрота анализа;

широкий выбор сорбентов и неподвижных фаз;

высокая гибкость изменения условий разделения;

возможность осуществления химических реакций в хроматографической колонке или детекторе, что расширяет круг анализируемых соединений (реакционная газовая хроматография);

– повышение информативности при сочетании с различными инструментальными методами (масс-спектрометрией и ИК(Фурье)спектрометрией).

 

Структурная схема хроматографа

На рис. 12.1 показана принципиальная схема хроматографа. Газовый хроматограф представляет собой совокупность нескольких узлов.

Рис.12.1 Структурная схема хроматографической установки.

Система электронного управления потоками газов (ЭУПГ) осуществляет формирование, очистку и стабилизацию потока газа-носителя и вспомогательных газов (если они необходимы для питания детекторов).

Система ЭУПГ включает в себя: газовые фильтры, газовый коллектор, регуляторы давления электронные, регуляторы расхода электронные.

Устройство ввода подает через испаритель в поток газа-носителя определенное количество анализируемой смеси в газообразном состоянии непосредственно перед колонкой.

Колонка – осуществляет разделение смеси на отдельные составляющие компоненты. При продвижении смеси по колонке протекают процессы сорбции и десорбции веществ на неподвижной фазе. При этом вещества, слабо сорбируемые неподвижной фазой, будут переноситься подвижной фазой по колонке с большей скоростью и наоборот. Из колонки разделенные компоненты смеси попадают в детектор.

Детектор регистрирует присутствие веществ, отличающихся по физическим или физико-химическим свойствам от газа-носителя, и преобразует возникающие изменения в электрический сигнал. Детекторы могут объединяться в аналитическом модуле в различных комбинациях.

Усилитель и АЦП - производит усиление и аналогово-цифровое преобразование полученного сигнала.

Регистрирующий прибор (компьютер или самописец) строит график зависимости сигнала детектора от времени, называемый графиком хроматограммы.

Устройство термостатирования (Термостат) – поддерживает требуемые температурные режимы устройства ввода, колонки и детектора поддерживаются с помощью встроенного нагревателя, входящих в систему термостатирования вместе с датчиками измерения температуры и терморегуляторами.

В газовой хроматографии используют насадочные (набивные), капиллярные и поликапиллярные колонки, их сравнение показано в табл. 14.

Параметр Насадочные (Набивные) Капиллярные Поликапиллярные
Длина колонки, м 1-6 10-100 0,4-1,2
Внутренний диаметр, мм 2-4   0,25-0,35   0,01-0,1 пакет из 1000 и более капилляров
Среднее число теоретических тарелок
Толщина пленки, мкм 1 10 0,005 0,5 0,005 0,05

Таблица 14. Сравнение различных типов колонок для газовой хроматографии

 

Рис.12.2 Насадочные колонки: стеклянная(а), металлическая(б);

Капиллярные колонки: армированная алюминием(в), армированная смолой(г).

В зависимости от метода анализа насадочные колонки могут быть выполнены из стеклянной (рис.12.2 а) или металлической трубки (рис.12.2 б).

Капиллярные колонки выполнены из кварцевого стекла, с нанесением насечек на внутренние стенки. Такая конструкция очень хрупкая, поэтому ее армируют с внешней стороны либо сплавами на основе алюминия (рис.12.2 в), либо композитными смолами (рис.12.2 г). Использование капиллярных колонок позволяет существенно повысить эффективность разделения, а поликапиллярных – не только получить высокую эффективность, но и провести разделение за очень короткое время.

 

Типы детекторов

Использующиеся при анализе детекторы, можно подразделить на интегральные и дифференциальные.

Интегральные регистрируют изменение во времени суммарного количества всех компонентов, дифференциальные – измеряют мгновенную концентрацию компонентов. На рис. 12.3 показан общий вид интегральной (а) и дифференциальной (б) хроматограмм. Дифференциальные детекторы в свою очередь подразделяют на концентрационные и потоковые.

В концентрационном детекторесигнал определяется текущей концентрацией в ячейке и многократно регистрируется, зависит от скорости потока. Детектор такого типа – катарометр.

 

Рис. 12.3. Общий вид интегральной (а) и дифференциальной (б) хроматограмм.

Потоковый детекторрегистрирует сигнал однократно, сигнал определяется мгновенным значением концентрации, не зависит от скорости потока. Пример такого детектора – пламенно-ионизационный детектор.

Общие требования, предъявляемые к детекторам следующие:

– достаточная чувствительность для решения конкретной задачи;

– малая инерционность;

– малая зависимость показаний от параметров опыта (температуры, давления, скорости потока и др.);

– линейная связь между показаниями и концентрацией в широком интервале ее изменения;

– стабильность «нулевой линии»;

– легкость записи сигнала и передачи его на расстояние;

– простота, дешевизна.

Наиболее важные характеристики детекторов, определяющие их выбор: чувствительность, точность, число порядков линейного диапазона градуировочного графика (ГГ), инерционность.

Универсальным является катарометр – детектор по теплопроводности (ДТП), принцип работы которого основан на изменении температуры нагретых нитей (чувствительных элементов) в зависимости от теплопроводности окружающего газа, которая определяется его составом. Детектор измеряет различие в теплопроводности чистого газа-носителя и смеси газа-носителя с определяемым веществом. Чувствительность детектора определяется геометрическими характеристиками чувствительного элемента, электрическими параметрами чувствительного элемента и измерительного моста, теплопроводностью газа-носителя и анализируемого соединения. Для повышения чувствительности необходимо использовать газ-носитель с высокой электропроводность (водород, гелий).

Похожими по конструкции являются детектор по плотности газов и детектор по теплоте сгорания (термохимический.) В детекторе по плотности газов измерение основано на различии плотностей газа-носителя и компонентов анализируемой смеси. Чувствительность детектора зависит от разности плотностей, в качестве газа-носителя рекомендуют использовать воздух, азот, аргон, диоксид углерода, и не использовать водород и гелий. Достоинствами этого детектора являются: отсутствие необходимости градуировки; возможность использования для агрессивных и каталитически неустойчивых соединений; возможность использования для определения молекулярной массы анализируемых веществ. Получение сигнала детектора по теплоте сгорания основано на измерении теплового эффекта при сгорании компонентов анализируемой пробы в присутствии катализатора (платины). Он не нашел широкого применения из-за следующих недостатков: применим только для анализа горючих веществ; не применим в препаративной хроматографии; имеет ограниченный интервал определяемых концентраций – (0,1 – 5) %.

Наиболее широко используются ионизационные детекторы, принцип работы которых основан на изменении ионного тока, вызванного введением в детектор анализируемого вещества. Ионный ток возникает под действием источника ионизации и электрического поля между электродами детектора. В качестве источников ионизации используют:

– пламена (пламенно-ионизационный детектор)

– электронную и ионную эмиссию (термоионный детектор)

– радиоактивные изотопы (детектор электронного захвата)

– электрический разряд

– фотоионизацию (фотоионизационный детектор)

В любой момент времени в детекторе достигается равновесие, в результате которого скорость образования заряженных частиц (ионов и электронов) равна сумме скоростей рекомбинации и сбора заряженных частиц на электродах детектора. Создаются условия, при которых либо плотность (концентрация) заряженных частиц, либо скорость переноса частиц в электрическом поле зависит от состава газа в камере детектора.

Газо-адсорбция

В газовой хроматографии метод анализа смесей газов и легколетучих веществ основан на явлении газо-адсорбции. Разделение основано на различии в адсорбции на поверхности твердого носителя (адсорбента). Адсорбция может быть обусловлена неспецифическими (ориентационными, индукционными и дисперсионными) и специфическими взаимодействиями (комплексообразованием, либо образованием водородной связи) и зависит от природы адсорбента и сорбата. В качестве адсорбентов используют пористые носители, которые обладают химической, физической и термической стабильностью; однородной поверхностью, равномерным распределением по размеру пор и известной адсорбционной активностью. Адсорбционная активность зависит от удельной поверхности (определяется геометрической структурой носителя) и удельной поверхностной энергии (определяется химической структурой поверхности).

Достоинствами адсорбентов в качестве неподвижных фаз являются способность выдерживать высокие температуры, отсутствие фонового сигнала при работе с ионизационными детекторами и высокая селективность.

Адсорбенты делятся на неорганические, полимерные (органические) и модифицированные. Среди неорганических адсорбентов особо важны сорбенты на основе углеродных материалов. Это неполярные сорбенты, для них особую роль в процессе разделения играют геометрические параметры поверхности. Наиболее интересная особенность данных материалов – возможность разделения структурных изомеров.

Широко используются полярные неорганические сорбенты на основе двуокиси кремния. Особый интерес для газо-адсорбционной хроматографии представляет использование цеолитовых молекулярных сит (M2/nO•Al2O3•xSiO2•yH2O), которые успешно позволяют разделятьразличные газовые смеси. Применение адсорбентов на основе Al2O3ограничено из-за его гетерополярной поверхности, гигроскопичности и асимметрии пиков разделяемых соединений. Сорбенты используют для разделения легких углеводородов.

Наиболее многообразны полимерные сорбенты на основе пористых полимеров стирола и дивинилбензола и дивинилбензола. Их удается синтезировать с заданными свойствами и очень чистой поверхностью. Это гидрофобные сорбенты, слабо удерживающие полярные молекулы, содержащие гидрокси- амино-группы. Основная область применения полимерных сорбентов – разделение полярных и реакционно способных газов и высоко полярных органических соединений; определение воды в органических растворителях и летучих органических примесей в воде.

 

– Конец работы –

Эта тема принадлежит разделу:

АНАЛОГОВЫЕ И ЦИФРОВЫЕ ЭЛЕКРОННЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ПРЕОБРАЗОВАТЕЛИ

Тема... АНАЛОГОВЫЕ И ЦИФРОВЫЕ ЭЛЕКРОННЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ПРЕОБРАЗОВАТЕЛИ Принципы и средства электрических измерений...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Газовая хроматография

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Электромеханические измерительные приборы
Электромеханические измерительные приборы являются аналоговыми средствами измерений. В их работе используется метод прямого измерительного преобразования. Принцип действия электро-механических изме

Магнитоэлектрические измерительные приборы.
Принцип действия магнитоэлектрических измерительных приборов состоит во взаимодействии магнитного поля проводника, по которому протекает измеряемый электрический ток, с магнитным полем постоянного

Электромагнитные измерительные приборы
Принцип действия электромагнитных приборов состоит во взаимодействии магнитного поля, создаваемого неподвижной катушкой, по которой протекает измеряемый электрический ток, с ферромагнитным сердечни

Электростатические измерительные приборы.
Принцип действия электростатических измерительных приборов основан на взаимодействии двух электрически заряженных тел. На рис. 5 приведена конструкция электростатического измерительного прибора. Ос

Электродинамические измерительные приборы.
Принцип действия электродинамических измерительных приборов состоит во взаимодействии магнитных полей неподвижной и подвижной катушек, по которым протекают измеряемые токи (рисунок 6). &nb

Аналоговые электронные вольтметры
Принцип действия аналоговых электронных вольтметров состоит в усилении сигнала измеряемого напряжения и измерении сигнала, полученного в результате этого усиления. Они являются обычно приборами пря

Аналоговые электронные частотомеры.
Принцип действия одного из наиболее распространенных аналоговых электронных частотомеров состоит в накапливании на конденсаторе электрического заряда, пропорционального измеряемой частоте электриче

Аналоговые электронные омметры
В основе работы электронных омметров лежит преобразование измеряемого сопротивления в напряжение постоянного тока, усиление и измерение этого напряжения. Омметры предназначаются для измерений актив

Цифровые электронные измерительные приборы
Цифровые электронные измерительные приборы - это измерительные приборы, в которых входной измеряемый электрический сигнал преобразуется в дискретный электрический выходной сигнал и представляется в

Цифровые частотомеры
Принцип действия цифровых частотомеров основан на преобразовании переменного напряжения, частоту которого нужно измерять, в последовательность однополярных импульсов с частотой следования, равной,

Медицинские электроизмерительные приборы
Медицинские электроизмерительные приборы - это измерительные устройства, предназначенные для измерений и регистрации во времени электрических потенциалов (биопотенциалов), возникающих при протекани

Электрокардиографы
Электрокардиограф - это медицинский электроизмерительный прибор, с помощью которого измеряют и регистрируют разность потенциалов между характерными точками поверхности тела человека. Появление этих

Электроннолучевой осциллограф
Прибор для наблюдения функциональной связи между двумя или несколькими величинами (параметрами и функциями; электрическими или преобразованными в электрические). Для этой цели сигналы параметра и ф

Устройство и принцип работы кинескопа.
В качестве измерительных систем помимо осциллографа, также может использоваться телевизионный кинескоп (рисунок 15), который работает по следующему принципу:

Угол отклонения луча
Углом отклонения луча ЭЛТ называется максимальный угол между двумя возможными положениями электронного луча внутри колбы, при которых на экране ещё видно светящееся пятно. От величины угла зависит

Ионная ловушка
Так как внутри ЭЛТ невозможно создать идеальный вакуум, внутри остаётся часть молекул воздуха. При столкновении с электронами из них образуются ионы, которые, имея массу, многократно превышающую ма

Задержка подачи напряжения на анод либо модулятор
В телевизоре, строчная развёртка которого выполнена на лампах, напряжение на аноде кинескопа появляется только после прогрева выходной лампы строчной развёртки и демпферного диода. Накал кинескопа

Принцип работы телевизионного приемника
Прежде чем сигнал попадает на кинескоп, он проходят ряд блоков. Структурная схема телевизионного приемника показана на рисунке 16.

Принцип действия универсальных осциллографов
Упрощенная функциональная схема универсального осциллографа представлена на рис. 5. Рис. 5. На ЭЛТ обозна

Основные характеристики осциллографов. Основные параметры канала Y.
1. Коэффициент отклонения – отношение амплитуды входного сигнала к видимому отклонению луча. . 2. Полоса пропускания

Основные параметры канала Х.
Коэффициент развертки – отношение времени сигнала к отклонению луча, вызванному направлением развертки за это время. Например: для

Измерение частоты по фигурам Лиссажу.
Чтобы измерить частоту периодического переменного напряжения при помощи осциллографа С1-5 необходимо: 1. Подать напряжение на вход Y. Установить переключатель режима развё

Электроннолучевой осциллограф
Прибор для наблюдения функциональной связи между двумя или несколькими величинами (параметрами и функциями; электрическими или преобразованными в электрические). Для этой цели сигналы параметра и ф

Светолучевой осциллограф
  Шлейфовый осциллограф, светолучевой, вибраторный осциллограф, прибор для визуального наблюдения и автоматической регистрации фотографическим методом физических процессов (например,

Устройство и принцип работы кинескопа
В качестве измерительных систем помимо осциллографа, также может использоваться телевизионный кинескоп, который работает по следующему принципу :

Угол отклонения луча
Углом отклонения луча ЭЛТ называется максимальный угол между двумя возможными положениями электронного луча внутри колбы, при которых на экране ещё видно светящееся пятно. От величины угла зависит

Ионная ловушка
Так как внутри ЭЛТ невозможно создать идеальный вакуум, внутри остаётся часть молекул воздуха. При столкновении с электронами из них образуются ионы, которые, имея массу, многократно превышающую ма

Задержка подачи напряжения на анод либо модулятор
В телевизоре, строчная развёртка которого выполнена на лампах, напряжение на аноде кинескопа появляется только после прогрева выходной лампы строчной развёртки и демпферного диода. Накал кинескопа

Принцип работы телевизионного приемника
Но прежде чем сигнал попадает на кинескоп, он проходят ряд блоков, Рис.2.4 Структурная схема телевизионного приемника

Медицинские электроизмерительные приборы
Медицинские электроизмерительные приборы — это измери­тельные устройства, предназначенные для измерений и регистрации во времени электрических потенциалов (биопотенциалов), возни­кающих при протека

Электрокардиографы
  Электрокардиограф — это медицинский электроизмерительный прибор, с помощью которого измеряют и регистрируют разность по­тенциалов между характерными точками поверхности тела человек

Устройство и принцип работы
Принцип действия прибора основан на прямом усилении и регистрации в виде кривой (электрокардиограммы) напряжения сигналов, снимаемых с электродов, наложенных на тело пациента. Электрокарди

Резистивные преобразователи
В работе резистивных преобразователей используют различные эффекты, вызывающие изменение активного электрического сопротивления под действием перемещения. Простейшим резистивным преобразов

Тензорезистивные преобразователи
В основе работы тензорезистивных преобразователей перемещений лежит тензоэффект (лат. tendere – натягивать, напрягать), который заключается в изменении электрического сопротивления пр

Емкостные преобразователи
В работе емкостных измерительных преобразователей используется изменение емкости конденсатора при воздействии линейных или угловых перемещений на один из его электродов. На рис. 7.3 приведены схемы

Индуктивные преобразователи
В работе индуктивных преобразователей используется изменение индуктивности некоторой магнитной системы при воздействии на ее элементы перемещений или возникновении деформации этих элементов.

Трансформаторные преобразователи
В работе трансформаторных (взаимоиндуктивных) измерительных преобразователей используется изменение под действием перемещения индуктивной связи между двумя системами обмоток, одна из которых (перви

Основные положения хроматографии
Хроматография – это метод разделения и определения веществ, основанный на распределении компонентов между двумя фазами –подвижной и неподвижной. Неподвижной (

Структура хроматограммы.
Рис.12.4 Типичная хроматограмма. Прохождение в детекторе газа-носителя без пробы на хроматограмме отражается фо

Развития хроматографии в Йошкар-Оле
В октябре 1978 года в ОКБ приборов контроля и автоматики Главного управления микробиологической промышленности, расположенном в городе Йошкар-Ола, по приказу НПО «Биопрепарат» был создан конструкто

Кран-дозатор для газовых проб
Кран-дозатор для ввода газовых проб предназначен для ввода в хроматограф газа, находящегося под избыточным давлением. Краны отличаются количеством ходов (4, 6, 8, 10, 12) и имеют два положения «Отб

Модуль ДТП (детектор по теплопроводности)
Модуль предназначен для анализа методом газовой хроматографии с насадочными колонками большинства органических соединений, в т.ч. постоянных газов, легких углеводородов, спиртов и спиртсодержащих с

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги