Методы обработки металла

Содержание 1. Сущность и особенности электроискровой обработки материалов 2. Технология ультразвуковой и анодно-механической обработки материалов 3. Сущность и особенности электроимпульсной обработки материалов 4. Обработка материалов лазером и электронным лучом 5. Сущность методов обработки деталей пластическим деформированием Список использованной литературы 1. Сущность и особенности электроискровой обработки материалов Различные электроискровые методы обработки материалов известны науке и промышленности достаточно давно.

Несомненными преимуществами подобных методов является относительная простота оборудования, высокая производительность, независимость производительности от твердости обрабатываемого материала и других его физических характеристик. Единственное ограничение применения только в необходимости, чтобы обрабатываемый материал был токопроводящим. Одним из видов электроискровой обработки является электроэрозионное легирование.

Принцип электроэрозионного легирования давно известен в промышленности и применяется, когда необходимо получить твердое, износостойкое покрытие поверхности, обладающее хорошей связью с материалом основы. Широко применяются в промышленности портативные установки с рабочей частью в виде карандаша для ручной обработки или специализированное оборудование (станок производства Японии для упрочнения вершин зубьев непрерывной стальной пилы). Механизм процесса следующий: При сближении электродов (анода v наносимого материала и катода v обрабатываемой поверхности) происходит увеличение напряженности электрического тока. При некотором расстоянии v напряженность становится достаточной для возникновения искрового разряда.

Через канал сквозной проводимости пучок электронов фокусировано ударяется о поверхность анода. Энергия остановленных электронов выделяется в поверхностных слоях анода. Поскольку в этот момент система броском освобождает накопленную энергию, плотности тока значительно превосходят критические значения.

В результате от анода отделяется капля расплавленного металла и движется к катоду, опережая движущийся вслед с большой скоростью анод. Капля расплавленного металла в процессе отделения от катода нагревается до высокой температуры, закипает и взрывается. Так как к этому моменту цепь тока прерывается, исчезают сжимающие усилия электромагнитного поля, частицы расплавленного металла летят широким факелом.

Перегретая капля в процессе отделения, закипания и взрыва, увеличившего ее действующую поверхность, все время была в соприкосновении с газом в атомарном состоянии, следовательно, химический состав летящих к аноду частиц отличается от исходного состояния анода. Факел частиц, достигнув катода, прилипает и частично внедряется в его поверхность. Вслед за частицами движется электрод, включенный в систему, успевшую вновь накопить энергию, так как источник ее питания продолжал действовать.

Поэтому через раскаленные частицы, лежащие на катоде, проходит второй импульс тока, сопровождающийся механическим ударом массы электрода-анода. Второй импульс сваривает частицы между собой и прогревает поверхность катода, на котором они лежат. Происходит диффузия частиц в поверхность катода и химическая реакция между этими частицами и материалом катода. Механический удар проковывает покрытие, увеличивая его однородность и плотность. Затем анод движется вверх, а на катоде остается слой металла, прочно соединенный с его поверхностью.

Упоминания о данном методе встречаются в специальной литературе уже в первой половине нашего столетия. Основные его черты сохраняются и до нашего времени. Основные изменения коснулись лишь конструкции электрододержателя, модернизации источника питания, комбинирования электродов-инструментов для нанесения комбинированных покрытий. Также существует вариант нанесения покрытий при внесении в зону низковольтного электрического разряда наносимого материала в мелкодисперсном виде. Однако при данном методе частота следования разрядов остается зависимой от частоты механических колебаний анода. Обобщенно, недостатками данного метода, принимаемого за прототип, являются: – низкая скорость процесса, зависящая от частоты следования импульсов, т.е. от частоты механических колебаний вибратора с анодом; – дискретный вид покрытия из-за особенностей процесса переноса металла с анода на поверхность катода; – невозможность обработки труднодоступных мест; – возможность нанесения покрытий только из электропроводных материалов.

Попытки расширить технологические возможности метода позволили предложить принципиально новый способ электроискрового легирования.

Данный способ состоит в том, что наносимый материал в мелкодисперсном, взвешенном в газе состоянии, попадает в промежуток между катодом – обрабатываемым материалом и анодом, в котором с большой частотой (более 2000 Гц) возбуждаются высоковольтные разряды. Попадая в разряд, порошок расплавляется и осаждается на обрабатываемой поверхности.

Проведенный патентный поиск показал принципиальную новизну предложенного способа. Существенными преимуществами предложенного способа являются возможность нанесения неэлектропроводных покрытий, увеличение скорости процесса и повышение надежности оборудования из-за отсутствия механических колебаний в системе, значительное снижение неравномерности покрытия из-за высокой частоты следования импульсов, перекрытие следов нанесения покрытия, снижение себестоимости процесса из-за упрощения оборудования и возможности обработки труднодоступных мест. 2.

Технология ультразвуковой и анодно-механической обработки материалов

Приведенные данные по энергозатратам и расходу материалов при алмазном... п.) и не ресурсосберегающим (большой расход алмазного инструмента, мал... Станки большой мощности получили незначительное распространение. Они б... К недостаткам существующих ультразвуковых станков относится большая эн... Для увеличения глубины обработки без существенной потери производитель...

Сущность и особенности электроимпульсной обработки материалов

Рассмотрим электрофизические основы технологии. При импульсном электри... Как уже отмечалось, технологии с применением электрического разряда в ... Этим и определяется их преимущество. Можно назвать ряд технологических... В канале разряда, включая приэлектродную зону, за короткое время выдел... Для организации разряда с нужными параметрами и эвакуации продуктов эр...

Обработка материалов лазером и электронным лучом

Достоинством способа лазерного легирования, несомненно, является возмо... Существует достаточно большое количество различных технологических мет... Динамическое упрочнение производят рабочими элементами в свободном сос... Переходные процессы в установках электроимпульсной технологии. Л.: Нау... Перспективы технологий электроимпульсного разрушения горных пород и ру...