Основные свойства инструментальных сталей

Основные свойства инструментальных сталей. Одной из главных характеристик инструментальных сталей является теплостойкость (или красностойкость), то есть устойчивость против отпуска при нагреве инструмента в процессе работы.

Различают инструментальные стали, не обладающие теплостойкостью (углеродистые и легированные стали, содержащие до 3 – 4 % легирующих элементов), полутеплостойкие (содержащие свыше 0,6 – 0,7 %C и 4 – 3 %Cr) и теплостойкие (высоколегированные стали ледебуритного класса, содержащие Cr, W, V, Mo, Co), получившие название быстрорежущих. Основным элементом, определяющим высокую износостойкость инструментальных сталей, является углерод, так как твердость, а следовательно и износостойкость инструмента после термообработки зависит от содержания углерода в мартенсите.

Наличие легирующих элементов в значительной степени влияет на прокаливаемость стали, а также увеличивает стабильность мартенсита при нагреве закаленной стали. Углеродистые инструментальные стали (У7, У8Г, У12А, У8ГА) маркируют буквой У (углеродистая): следующая за ней цифра – средняя массовая доля углерода в десятых доля процента, буква Г говорит о повышенном содержании марганца в данной стали, А – высококачественная, т.е. более чистая по сере и фосфору сталь. Рис. 1. Схема микроструктуры углеродистых инструментальных сталей а) Сталь У8 после отжига – перлит зернистый б) Сталь У8 после закалки и низкого отпуска – мартенсит отпуска в) Сталь У12 после отжига – перлит зернистый + цементит вторичный г) СтальУ12 после закалки и низкого отпуска – мартенсит отпуска +цементит вторичный Доэвтэктоидные и эвтектоидные инструментальные стали в исходном (отожженном) состоянии имеют структуру зернистого перлита (рис. 1). В структуре заэвтектоидных сталей дополнительно присутствует вторичный цементит.

Стали с такой структурой имеют низкую твердость и хорошо обрабатываются резанием.

Термическая обработка. Температура закалки у доэвтектоидных сталей должна быть выше верхней критической точки Ас3 (t = Ас3 + 20 – 40), ºС, а у эвтектоидных и заэвтектоидных выше нижней критической точки Ас1 (t = Ас1 + 20 – 40), ºС, чтобы в результате закалки сталь получила мартенситную структуру. У заэвтэктоидных сталей при этом сохраняется вторичный цементит.

Закалку проводят в воде или в водных растворах солей. После закалки инструментальные углеродистые стали подвергаются низкому отпуску при 150 – 170 ºС (рис. 2), снимающего значительную часть закалочных напряжений при сохранении высокой твердости. Формируется структура мартенсит отпуска. У заэвтектоидных инструментальных сталей в структуре дополнительно присутствует вторичный цементит (рис. 1). Поскольку углеродистые стали обладают низкой прокаливаемостью, из них изготовляют в основном инструмент небольшой толщины (напильники, ножовочные полотна, хирургический инструмент). Рис. 2. График термической обработки заэвтектоидной инструментальной стали. Углеродистые стали можно использовать в качестве режущего инструмента только для резания материалов с низкой твердостью и с малой скоростью резания, так как при нагреве выше 190 – 200 ºС их твердость резко снижается.

Легированная инструментальная сталь (X, 9X, 9XC, 6XBГ) производится в основном высококачественной, поэтому буква А в конце марки не ставится.

Цифра в начале марки показывает среднюю массовую долю углерода в десятых долях процента. Если содержание углерода около 1 %, то цифра обычно отсутствует. Буквы означают легирующие элементы: А (внутри марки) – азот, В – вольфрам, Г – марганец, К – кобальт, М – молибден, Н – никель, С – кремний, Т – титан, Ф – ванадий, Х – хром. Цифры, стоящие после букв, показывают среднюю массовую долю легирующего элемента в целых процентах.

Отсутствие цифры после буквы означает, что содержание этого легирующего элемента находится в пределах от 0,1 до 1 %. Легированные инструментальные стали подобно углеродистым не обладают теплостойкостью и пригодны только для резания относительно мягких материалов с небольшой скоростью. Их используют для инструмента, не подвергаемого в работе нагреву свыше 200 – 250 ºС. Легированные стали обладают большей прокаливаемостью, чем углеродистые.

Низколегированные стали (11Х, 13Х) рекомендуются для инструментов диаметром до 15 мм, а стали повышенной прокаливаемостью (9ХС, ХВСГ) имеют большую теплостойкость (250 – 280) ºС, хорошие режущие свойства и сравнительно мало деформируются при закалке. Их используют для изготовления инструментов диаметром 60 – 80 мм. Окончательная термическая обработка легированных сталей состоит из неполной закалки и низкого отпуска, подобно углеродистым (рис. 2). При неполной закалке изделие нагревают до t = Ас1 + (30 – 50) ºС, выдерживают и быстро охлаждают в масле или горячих средах, что уменьшает их коробление по сравнению с углеродистыми, охлаждаемыми в воде. Низкий отпуск проводят при температуре 150 – 180 ºС. Структура инструментальных легированных сталей после окончательной термической обработки состоит из отпущенного легированного мартенсита и легированного зернистого цементита, т.е. она качественно подобна структуре углеродистой заэвтектоидной инструментальной стали после аналогичной термообработки (рис. 1). Быстрорежущая сталь маркируется буквой Р, а следующая за ней цифра указывает среднюю массовую долю главного легирующего элемента быстрорежущей стали – вольфрама (Р18, Р6М5, Р10К5Ф5). Среднее содержание других легирующих элементов обозначается цифрой после соответствующей буквы.

Среднее содержание хрома в большинстве быстрорежущих сталей составляет 4 % и поэтому в обозначении марки стали не указывается.

Кроме того, не указывается содержание молибдена до 1 % по массе и ванадия, если его содержание меньше, чем молибдена.

Красностойкость в инструментальных сталях выражается способностью противостоять распаду мартенсита при высоких температурах. Красностойкость достигается за счет уменьшение термодинамической активности углерода. Чтобы получить красностойкость, нужно подавить диффузию углерода. А это достигается за счет введения карбидообразующих элементов. Основными элементами стали, обеспечивающими высокую красностойкость, являются W, Mo, V. Карбидообразующие элементы образуют в стали специальные карбиды: Me6C на основе W и Мо, МеС на основе V и Ме23С6 на основе Сr. Быстрорежущие стали относятся к карбидному (ледебуритному) классу.

Их фазовый состав в отожженном состоянии представляет собой легированный феррит и карбиды Cr7C3, Fe3W3C6, VC, в которых также растворен ванадий. В феррите растворена большая часть хрома: почти весь вольфрам, молибден и ванадий находятся в карбидах.

Количество карбидной фазы в быстрорежущих сталях достигает 22 – 30 %. Рис. 3. Схема микроструктуы быстрорежущих сталей. а) Литая и отожженная – сорбитообразный перлит + карбиды + ледебуритная эвтектика б) Горячедеформированная и отожженная – сорбитообразный перлит + карбиды в) Закаленная – мартенсит закалки + аустенит остаточный + карбиды г) Отпущенная – мартенсит отпуска + карбиды. В структуре литой бысторежущей стали присутствует сложная эвтектика, напоминающая ледебурит.

В результате горячей механической обработки (ковки) сетка ледебуритной эвтектики дробится (рис. 3). Для снижения твердости, улучшения обработки резанием и подготовки структуры стали к закалке после ковки быстрорежущую сталь подвергают отжигу при 800 – 860 ºС. Для придания теплостойкости стали инструменты подвергают закалке и многократному отпуску (рис. 4). Рис. 4. График термической обработки быстрорежущей стали. Режимы термической обработки инструментальных сталей приведены в табл. 1, 2, 3 в приложении.

Температура закалки быстрорежущей стали принимают в интервале 1200 – 1290 ºС. Высокие температуры закалки необходимы для более полного растворения карбидов и получения при нагреве аустенита, высоколегированного хромом, вольфрамом, молибденом и ванадием. Это обеспечивает получение после закалки мартенсита, обладающего высокой теплостойкостью. Однако даже при очень высоком нагреве растворяется только часть карбидов, примерно 30 – 60 % от имеющихся у различных марок быстрорежущих сталей.

Высоколегированный аустенит, полученный при нагреве под закалку, обладает большой устойчивостью, поэтому быстрорежущие стали имеют малую критическую скорость охлаждения (закалки) и могут закаливаться на воздухе. Однако на практике в качестве охлаждающей среды применяется масло. Структура быстрорежущей стали после закалки представляет высоколегированный мартенсит, содержащий 0,3 – 0,4 %С, нерастворенные избыточные карбиды и высоколегированный остаточный аустенит, составляющий 25 – 35 %. Поскольку остаточный аустенит понижает режущие свойства стали, его присутствие в готовом инструменте недопустимо.

После закалки следует отпуск при 550 – 570 ºС, вызывающий превращение остаточного легированного аустенита в легированный мартенсит и дисперсионное твердение в результате частичного распада мартенсита и выделения карбидов (рис. 3), что сопровождается увеличением твердости. Чтобы весь остаточный аустенит перевести в мартенсит и произошел отпуск вновь образовавшегося мартенсита, применяют многократный (чаще трехкратный) отпуск при 550 – 570 ºС.