рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Материаловедение

Материаловедение - раздел Промышленность, 1.Опишите Явление Полиморфизма В Приложении К Титану. Какое...

1.Опишите явление полиморфизма в приложении к титану. Какое практическое значение оно имеет? Многие металлы в зависимости от температуры могут существовать в разных кристаллических формах или, как их называют, в разных полиморфных модификациях.В результате полиморфного превращения атомы кристаллического тела, имеющие решетку одного типа, перестраиваются таким образом, что образуется кристаллическая решетка другого типа. Полиморфную модификацию, устойчивую при более низкой температуре, для большинства металлов принято обозначать α, а при более высокой – β, затем γ и т. д. При полиморфном превращении кристаллы (зерна) новой полиморфной формы растут в результате неупорядоченных, взаимно связанных переходов атомов через границу фаз. Отрываясь от решетки исходной фазы (например, β), атомы по одиночке или группами присоединяются к решетке новой фазы (α), и, как следствие этого, граница зерна α-модификации передвигается в сторону зерна β-модификации, «поедая» исходную фазу. Зародыши новой модификации наиболее часто возникают на границах зерен исходных кристаллитов.

Вновь образующиеся кристаллы закономерно ориентированы по отношению к кристаллам исходной модификации.

Используя явление полиморфизма, можно упрочнять и разупрочнять сплавы при помощи термической обработки. Титан имеет две аллотропические модификации: до 882 °С существует α-титан (плотность 4,505 г/см3), который кристаллизуется в гексагональной решетки с периодами а = 0,2951 нм и с = 0,4684 нм, а при более высоких температурах – β-титан (при 900 °С плотность 4,32 г/см3), имеющий ОЦК-решетку, период которой а = 0,3282 нм. 2.Каким способом можно восстановить пластичность холоднокатаной медной ленты? Назначьте режим термической обработки и опишите сущность происходящих процессов. С увеличением степени холодной деформации свойства, характеризующие сопротивление деформации повышаются, а способность к пластической деформации уменьшается.

Это явление получило название наклепа.

Рекристаллизационный отжиг используют в промышленности как первоначальную операцию перед холодной обработкой давлением (для придания материалу наибольшей пластичности), как промежуточный процесс между операциями холодного деформирования (для снятия наклепа) и как окончательную (выходную) термическую обработку (для придания полуфабрикату или изделию необходимых свойств). При нагреве наклепанного металла не восстанавливается старое зерно, а появляется совершенно новое зерно, размеры которого могут существенно отличаться от исходного.

Происходит образование новых, равноосных зерен вместо ориентированной волокнистой структуры деформированного металла. Температура отжига для достижения рекристаллизации по всему объему и сокращения времени процесса превышает температуру порога рекристаллизации.Температура нагрева связана с температурой плавления: ТН ≈ 0,4 Тпл (для чистых металлов). Для меди: Тн = 0,4 (1083 + 273) – 273 ≈ 270 °С. 3. Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 1,4% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется? Строим диаграмму состояния системы Fe – Fe3C. Диаграмма железоуглеродистых сплавов может быть представлена в двух вариантах: метастабильном, отражающем превращения в системе “железо-карбид железа”, и стабильном, отражающем превращения в системе “железо-графит”. Наибольшее практическое значение имеет диаграмма состояния “железо-карбид железа”, т.к. для большинства технических сплавов превращения реализуются по этой диаграмме.

Карбид железа (Fe3C) называют цементитом, поэтому метастабильную диаграмму железоуглеродистых сплавов называют диаграммой состояния “железо-цементит” (Fe-Fe3C). Компоненты и фазы в железоуглеродистых сплавах Основными компонентами железоуглеродистых сплавов являются железо и углерод, которые относятся к полиморфным элементам.

В железоуглеродистых сплавах эти элементы взаимодействуют, образуя различные фазы. Под фазой в общем смысле понимается однородная часть системы, имеющая одинаковый химический состав, физические свойства и отделенная от других частей системы поверхностью раздела.

Взаимодействие железа и углерода состоит в том, что углерод может растворяться как в жидком (расплавленном) железе, так и в различных его модификациях в твердом состоянии. Помимо этого он может образовывать с железом химическое соединение.

Таким образом в железоуглеродистых сплавах могут образовываться следующие фазы: жидкий раствор, аустенит, феррит, цементит. Компонентами в данной системе являются- железо и цементит. Железо: металл серебристо-белого цвета.Атомный номер 26, атомный радиус 0,127 нм. Чистое железо, которое может быть получено в настоящее время, содержи»: 99,999 % Fе, а технические сорта 99,8-99,9% Fe. Температура плавления железа 1539°С. Железо имеет две кристаллографические модификации: кубическую объемно-гентрированную (ОЦК) и кубическую гранецентрированную (ГЦК) кристалллические решетки.

Железо с ОЦК решеткой существует в двух температурных иннах: до 911°С и от 1392°С до 1539°С. До температуры 768°С железо ферромагнитно и его называют -железо (), а выше этой температуры - парамагнитно. Критическую точку (768°С), соответствующую магнитному превращению, т.е. переходу из ферро-магнитного состояния в парамагнитное называют точкой Кюри и обозначают А.Парамагнитное железо с ОЦК решеткой обозначают -железо (Fе). А железо в интервале температур 1392-1539°С обозначают железо (Fe). В настоящее время нередко не различают Fe, Fe и Fe и называют железо с ОЦК решеткой - Fe различая только низкотемпературное Fe и высокотемпературное Fe. Период ОЦК решетки зависит от температуры: у низкотемпературного Fe-0,28606 нм, а у высокотемпературного Fe- 0,3649 нм. В интервале температур 911°-1392°С железо имеет ГЦК-решетку и называется -железо (Fe). Критическую точку ( рис. 1) превращения при 911°С обозначают АЗ, а критическую точку ( рис. 1) при 1392°С обозначают А4. Период ГЦК решетки равен 0,364 нм. ГЦК решетка более, компактна, чем ОЦК решетка.

В связи с этим при переходе Fe в Fe объем железа уменьшается приблизительно на %. Fe парамагнитно.

Железо может растворять различные элементы, образуя с неметаллами твердые растворы внедрения, а с металлами твердые растворы замещения. Механические свойства технического железа характеризуются следующими величинами: предел прочности при растяжении 120МПа. Относительное удлинение 50%, относительное сужение твердость НВ80. Эти показатели могут изменяться в некоторых пределах, т.к. на свойства железа влияет размер зерна, температура, наличие примесей.

Цементит (обозначают Ц) - карбид железа (практически постоянного состава) химическое соединение углерода с железом - Fe3С, содержащее углерода 6,67%. Цементит имеет сложную ромбическую peшетку с плотной упаковкой атомов.

Цементит слабо ферромагнитен и теряет ферромагнетизм при температуре 210°С (критическая точка Ао). Температуру плавления цементита трудно, определить в связи с его распадом при нагреве. Она установлена равной 1260°С при нагреве лазерным лучем.Механические свойства характеризуются высокой твердостью (> НВ800), но чрезвычайно низкой, практически нулевой, пластичностью.

Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов, а атомы железа - металлами. Такой твердый раствор на базе цементита называется легированным цементитом. На диаграмме Fe- Fe3С присутствуют следующие фазы: жидкий раствор ( L ), феррит ( ф, Fe),аустенит (А, Fe(с)) и цементит (Ц). Феррит - твердый раствор углерода в -железе.Предельная растворимость углерода в низкотемпературном Fe= 0,02 % (т. P рис. 1), а в высокотемпературном Fe= 0,1 % (т. Н рис. 1). Столь низкая растворимость углерода в Fe обусловлена малым размером межатомных пор в ОЦК решетке.

Значительная доля атомов углерода вынуждена размещаться в дефектах (вакансиях, дислокациях). Феррит - мягкая, пластичная фаза со следующими механическими свойствами: = 300 МПа; = 40%; =70%; KCU = 2,5 МДж/м2; НВ 80-100. Аустенит - твердый раствор углерода в -железе.Предельная растворимость углерода в Fe= 2,14% (т. Е рис.1). Механические свойства аустенита характеризуются меньшей пластичностью и большей прочность и твердостью (НВ 160-200), чем у феррита.

Линии диаграммы (рис.1): 1. АВСD - линия ликвидус АНJECFD - линия солидус.HJB - линия перитектического превращения (t - 1499°С). В результате перитектической реакции образуется аустенит: Реакция наблюдается только у сплавов, содержащих углерода от 0,1 до 0,51%. Причем, в сплавах, содержащих углерода от 0,1% до 0,16% после завершения реакции в избытке остается феррит, а в сплавах, содержащих углерода от 0,16% до 0,51% в избытке остается жидкость.

Это связано с тем, что перитектическая реакция протекает при строгом количественном соотношении фаз, если какой-то из фаз вступает в реакцию больше оптимального количества - то она остается в избытке.Необходимое количество реагирующих фаз в данной системе определяется т. J (рис.1) 4.ECF - линия эвтектического превращения ( t°C - 1147°C). В результате эвтектической реакции из жидкой фазы образуется смесь аустенита и цементита.

Эта эвтектическая смесь называется ледебуритом (Л) Реакция протекает у всех сплавов системы, содержащих углерода более 2,14%. Состав смеси при температуре 727°С изменяется, т.к. аустенит превращается в перлит и ниже этой температуры ледебурит-смесь перлита и цементита. В ледебурите цементит, образует сплошную матрицу, в которой размещены колонии перлита. Такое строение ледебурита служит причиной его большой твердости (> НВ 700) и хрупкости.Присутствие ледебурита в структуре сплавов обусловливает их неспособность к обработке давлением, затрудняет обработку резанием. 5. PSK - линия эвтектоидного превращения (t°С=727°С). В результате эвтектоидного превращения из аустенита образуется смесь феррита и цементита.

Эта эвтектоидная смесь называется перлитом (П); имеет вид перламутра, почему эта структура и получила такое название.Эвтектоидное превращение протекает во всех сплавах системы, содержащих углерода более 0,02%. Критические точки згой линии обозначают A. Перлит может иметь зернистое, но чаще имеет пластинчатое строение и является прочной структурной составляющей со следующими механическими свойства-ми: =800900 МПа; =450 МПа; б16%; НВ 180-220. 6. МО линяя магнитного превращения (t°С=727°С). При нагреве ферромагнитный феррит превращается в парамагнитный а при охлаждении наоборот. 7. ES - линия сольвус.

Эта линия характеризует изменения концентрации углерода в аустените при изменении температуры.С понижением температуры от 1147°С до 727°С предельная растворимость углерода в аустените понижается от 2,14% до 0,8%, следовательно при охлаждении из аустенита выделяется цементит, называемый вторичным (Ц). (Цементит кристаляизующийся из жидкого раствора называется первичным). Линию ES еще называют линией вторичного цементита. Цементит вторичный образуется во всех сплавах содержащих углерода более 0,8%. 8. PQ - линия сольвус.

Эта линия характеризует изменение концентрации углерода в феррите при изменении температуры.С понижением температуры от 727°С до комнатной предельная растворимость углерода в феррите понижается от 0,02% до 0,006%, следовательно, при охлаждении из феррита выделяется цементит, называемый третичным (Цш). Линию РQ еще называют линией третичного цементита. Во всех сплавах, содержащих углерода более 0,02% происходит образование Цш, но его пластинки нарастают на уже имеющиеся пластинки цементита и поэтому структурно неразличимы.

Проанализируем превращения, протекающие в сплаве, построив кривую охлаждения заданного сплава с применением правила фаз; Правило фаз устанавливает количественную зависимость между числом степеней свободы (с), числом компонентов (к), образующих систему и числом фаз (Ф), находящихся в равновесии: С=К - Ф +1. Под числом степеней свободы (вариантностью системы) понимают возможность изменения температуры, давления и концентрации без изменения числа фаз, находящихся в равновесии.

Следовательно, если в точке диаграммы С=0, то на кривой охлаждения - площадка, а если С=1, то на кривой охлаждения - изменение скорости (перегиб). Все сплавы изучаемой системы можно разделить на две группы: стали, чугуны. Стали содержат углерода 0,02% до 2,14, а чугуны от 2,14% до 6,67%. По структуре стали различаются на доэвтектоидные (от 0,02%-0,8% С), эвтектоидные (0,8%С) и заэвтектоидные (0,8% - 2,14%С). Чугуны по структуре различаются на доэвтектические (от 2,14%-4,3%С), эвтектические (4,3%С) и зазвтектические (4,3% - 6,67%С). Рассмотрим кристаллизацию некоторого сплава с содержащего 0,3% С (доэвтэктоидная сталь): Кристаллизация сплава начинается при температуре т.1 (C=1): из жидкой фазы кристаллизуется феррит; состав которого по мере кристаллизации до температуры т.2 (C=0) изменяется по линии (1-Н), а состав жидкой фазы по линии (1-B). При температуре т.2 в сплаве протекает перитектическое превращение с избытком жидкой фазы (Ж), т.к. требуемое количество а в т.2 количестве При охлаждении сплава в интервале температур от т.2 до т. З (С=1) происходит превращение оставшегося после перитектической реакции жидкости в аустенит.

Ниже температуры т. З состоит из однородного аустенита.

При охлаждении сплава в интервале температур от т.З до т.4 (С=1) превращений в нем не происходит.

При температуре т.4 в сплаве начинается превращение аустенита в феррит, при этом состав оставшегося аустенита изменяется по линии (4-5) т.е. аустенит обогащается углеродом.Это превращение продолжается до t°С 727°С, т.е. до т.5 При этой температуре весь аустенит, содержащий 0,8%°C переходит в перлит который вместе с выделившимся ранее ферритом образует конечную структуру стали (Ф+П). По мере охлаждения сплава от температуры т.5 до комнатной из феррита, входящего в состав перлита будет выделяться Цш но он, как указывалось выше, будет структурно неразличим. Кривая превращения при охлаждении 3. После закалки углеродистой стали была получена структура мартенсит + цементит.

Нанесите на диаграмму состояния железо-цементит ординату (примерно) обрабатываемой стали, укажите температуру ее нагрева под закалку.

Опишите превращения, которые произошли при нагреве и охлаждении стали.Наносим на диаграмму состояния железо-цементит ординату (примерно) обрабатываемой стали, выбираем температуру равную 740 и содержание углерода 1,0. Подвергаем сталь неполной закалке. После закалки заэвтектоидная сталь Аустенит + цементит после охлаждения с критической скоростью в холодной воде (или воду с добавками соли или едкого натра) приобретает структуру, состоящую из мартенсита и цементита. 4. Вычертите диаграмму изотермического превращения аустенита для стали У8. Нанесите на нее кривую режима термической обработки, обеспечивающей получение твердости 60 63 HRC . Укажите, как этот режим называется и какая структура при этом получается. Опишите сущность происходящих превращений.

Интервалы температур: 700…550 - Перлитное превращение 550…200 - Бейнитное (промежуточное) превращение 200…-80 - Мартенситное превращение Поскольку с понижением температуры скорость диффузии углерода замедляется, процессы превращения аустенита, связанные с перераспределением углерода, не успевают получить своего полного развития.

Вследствие этого у быстро охлажденной стали возникают неравновесные структурные состояния: сорбит, тростит и мартенсит. Сорбитом называется смесь феррита и цементита. Практически сорбит возникает при распаде аустенита в условиях сравнительно невысокой скорости охлаждения.Дальнейшее увеличение переохлаждения приводит к образованию тростита, представляющего также смесь феррита и цементита, но большей степени дисперсности.

При наиболее резком охлаждении возникает принципиально отличная от вышеуказанных состояний структурная форма стали мартенсит. На схеме диаграммы изотермиче-ского превращения условно показана область мартенситного пре-вращения (ниже Мн). Мартенситное превращение интенсив-но протекает при непрерывном охла-ждении в интервале температур от Мн до Мк. Малейшая изотермиче-ская выдержка в этом интервале темпе-ратур приводит к стабилизации аустенита, т. е. превращение не доходит до конца, и кроме мартенсита в структуре наблюдается так называемый остаточный аустенит.

Для получения мартенситной структуры аустенит углеродистых сталей необходимо очень быстро и непрерывно охлаждать, применяя для этого холодную (лучше соленую) воду. Быстрое охлаждение необходимо для того, чтобы подавить возможные диффузионные процессы и образование перлитньгх и бейнитных структур.В процессе мартенситного ? -> превращения углерод остается в твердом растворе, искажая кристалли-ческую решетку Fеа. Мартенсит имеет тетрагональную пространственную решетку.

Свойства мартенсита сталей зависят от количества растворенного в нем углерода. Мартен-сит имеет очень высокую твердость, равную или превышающую НRС 60, при содержании углерода, большем 0,4 %. С увеличением содержания угле-рода возрастает хрупкость мартенсита.Мартенситное превращение в сталях сопровождается заметным увеличением объема.

Весьма сильно изменяются и другие физические свойства стали. 5. С помощью диаграммы состояния железо-цементит опишите структурные превращения, происходящие при нагреве доэвтектоидной стали. Покажите критические точки Аc1 и Ас3 для выбранной вами стали. Установите режим нагрева этой стали под закалку. Охарактеризуйте процесс закалки, опишите получаемую структуру и свойства стали. Стали, содержащие от 0,02 до 0,8 % углерода, называются доэвтектоидными.Эти стали после окончания кристаллизации состоят из аустенита, который не претерпевает изменений при охлаждении вплоть до температур, соответствующих линии GOS (см. рис. 1, а). При более низких температурах (ниже линии GOS) по границам зерен аустенита образуются зародыши феррита, которые растут, превращаясь в зерна.

Количество аустенита уменьшается, а содержание в нем углерода возрастает, так как феррит почти не содержит углерода (≤0,02 % С). При понижении температур состав аустенита меняется по лнии GOS, а феррита – по линии GP. Из доэвтектоидных сталей выбираем сталь 20, содержащую 0,17 –0,24 % С. Ее критические точки: Ас1=735 °С, Аc3=850 °С. Температура нагрева под закалку назначается из условия: Ас3 + (30 ¸ 50) = 880 ¸ 900 °С. Закалкой называется нагрев стали до температур выше фазовых превращений, выдержка при этой температуре и быстрое охлаждение со скоростью больше критической. Закалка стали 20 заключается в нагреве до температуры 880 – 900 °С, выдержке и охлаждении в воде. Охлаждение в воде обеспечивает скорость охлаждения выше критической.

В результате закалки получаем структуру мартенсит.

Мартенсит представляет собой пересыщенный твердый раствор углерода в α-железе. После закалки сталь имеет высокую твердость и низкую пластичность.

– Конец работы –

Используемые теги: Материаловедение0.038

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Материаловедение

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

КОНСПЕКТ ЛЕКЦИЙ по курсу Архитектурное материаловедение Конспект лекций по курсу Архитектурное материаловедение
ФГОУ ВПО ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ... ИНСТИТУТ Архитектуры и искусств... КАФЕДРА ИНЖЕНЕРНО строительных ДИСЦИПЛИН...

Тест № 1 Материаловедение В тесте должно быть не менее 20 вопросов по 4 разделам
Раздел... Металлическая связь это способность валентных электронов свободно перемещаться по всему объему кристалла...

Материаловедение
среднего профессионального образования... Нефтяной техникум... Материаловедение контрольное задание для студентов заочников образовательных учреждений среднего профессионального образования по специальности...

Тесты1 Материаловедение
Тесты Материаловедение... Основные свойства материалов Основы теории... Легированные стали и сплавы Цветные металлы и сплавы на их...

Лекция 1 Предмет изучения материаловедения
Объектом изучения материаловедения являются металлы сплавы стеклообразные и керамические мат лы композиционные мат лы... Основной задачей м ведения явл экспериментальное изучение зависимостей... Основными факторами влияющими на физ св ва мат ла сточки зрения м ведения являются структура мат ла и его фазовый...

По дисциплине Материаловедение
ВПИ филиал ВолгГТУ... Кафедра ВТО... Семестровая работа...

Перечень вопросов по дисциплине Материаловедение
Классификация ассортимента парфюмерно косметических изделий... Классификация ассортимента косметических изделий по... функциональному действию...

РАБОЧАЯ ПРОГРАММА Предмет: «Материаловедение»
Республиканское государственное образовательное учреждение начального профессионального образования... Профессиональное училище г Чебоксары Согласовано Зам директора... РАБОЧАЯ ПРОГРАММА...

Дисциплина Материаловедение
ТЕСТЫ... дисциплина Материаловедение...

Дисциплина Материаловедение
ТЕСТЫ... дисциплина Материаловедение...

0.03
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам
  • Понятие науки строительное материаловедение В строительстве используют большое количество разнообразных материалов По назначению строительные материалы принято делить на следующие группы... вяжущие строительные материалы воздушные вяжущие гидравлические вяжущие... стеновые материалы ограждающие конструкции К этой группе относятся естественные каменные материалы керамический...
  • Курсовая работа По дисциплине: Материаловедение Федеральное государственное бюджетное образовательное учреждение... высшего профессионального образования... Тверской государственный технический университет...
  • Материаловедение и технология конструкционных материалов ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ... Тюменский государственный нефтегазовый университет... Сургутский институт нефти и газа филиал...
  • Архитектурно-дизайнерское материаловедение Классификация строительных материалов... Огромное количество наименований строительных материалов составляющих сейчас широкую их номенклатуру стремятся...
  • Материаловедение Материаловедение это наука о взаимосвязи электронного строения структуры... Создание научных основ металловедения по праву принадлежит Чернову Д К который установил критические температуры...