рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Кристаллизация стали

Кристаллизация стали - раздел Промышленность, Диаграмма состояния железоуглеродистых сплавов Первичная Кристаллизация Стали В Зависимости От Содержания Углерода Происходи...

Первичная кристаллизация стали в зависимости от содержания углерода происходит по-разному. При содержании углерода от 0 до 0,5% из жидкости начинает выделяться феррит, а при содержании углерода от 0,5% до 2,14% из жидкости первоначально выделяется аустенит. Диаграмма состояния и кривые охлаждения типовых сплавов представлены на рис.8.

 

 

Рис.8 Кривые охлаждения при кристаллизации:

а)- кристаллизация сталей; б)- кристаллизация чугунов.

 

Рассмотрим кристаллизацию сплава 1, относящегося к доэвтектоидной стали, с содержанием углерода менее 0,5% (Рис.8,а).

Кристаллизация этого сплава начинается в точке t1 выделением из жидкости кристаллов феррита. При температуре 14990С в сплаве происходит перитектическая реакция, при которой выделившийся ранее феррит взаимодействует с жидкостью, в результате образуется новая фаза – аустенит. В соответствии с правилом фаз эта реакция идет при постоянной температуре и поэтому на кривой охлаждения появляется температурная остановка. После исчезновения феррита происходит дальнейшая кристаллизация жидкости в аустенит. В т t2 кристаллизация заканчивается и до т. t3 происходит охлаждение аустенита. Окончательное формирование структуры стали происходит в результате превращений аустенита при дальнейшем охлаждении. Основой этого превращения является полиморфизм, связанный с перегруппировкой атомов из ГЦК решетки аустенита в ОЦК решетку феррита, а также изменение растворимости углерода по линии ES в аустените и PQ в феррите. В данном сплаве в интервале температур t3–727°C идет полиморфное превращение А ® Ф. На стыках и границах зерен аустенита возникают зародыши феррита, которые растут и развиваются за счет атомов аустенитной фазы. Состав аустенита меняется по линии GS, а феррита – по линии GP. При 727 °С концентрация углерода в аустените равна 0,8 % (точка S) и в феррите – 0,025 % (точка Р). Ниже этой температуры происходит эвтектоидное превращение. В равновесии находятся три фазы: феррит состава точки Р, аустенит состава точки S, цементит. Так как число степеней свободы равно нулю, т.е. имеется нонвариантное равновесие, то процесс протекает при постоянном составе фаз. На кривых охлаждения или нагрева наблюдается температурная остановка. Таким образом, структура доэвтектоидной стали характеризуется избыточными кристаллами феррита и эвтектоидной смесью феррита с цементитом, называемой перлитом. Количественные соотношения феррита и перлита зависят от состава сплава. Чем больше углерода в доэвтектоидной стали, тем больше в структуре ее перлита и, наоборот, чем меньше углерода, тем больше феррита и меньше перлита. При дальнейшем охлаждении в результате изменения растворимости углерода в феррите (соответственно линии РQ) выделяется третичный цементит. Однако в структуре обнаружить его при наличии перлита невозможно.

Сплавы с содержанием углерода менее 0,025 % (левее т. Р) не испытывают эвтектоидного превращения.

Сплав 2 относится по составу к заэвтектоидной стали. Кристаллизация этого сплава начинается в точке t5 выделением из жидкости кристаллов аустенита. В т t7 кристаллизация заканчивается и до температуры t8 (линия ES) аустенит охлаждается без изменения состава. Несколько ниже этой температуры аустенит достигает предельного насыщения углеродом согласно линии растворимости углерода в аустените ЕS. В интервале температур t10 - 727 °C из пересыщенного аустенита выделяется высокоуглеродистая фаза – цементит, который называется вторичным. Состав аустенита меняется по линии ЕS и при температуре 727 °С достигает точки S (0,8 %С). Ниже 727 °С происходит эвтектоидное превращение: аустенит состава точки S (0,8 %С) распадается на смесь феррита состава точки Р (0,025 %С) и цементита. Таким образом, структура заэвтектоидной стали характеризуется зернами перлита и вторичного цементита. При медленном охлаждении цементит, как правило, располагается в виде тонкой оболочки. В разрезе это выглядит как сетка цементита. Более благоприятной формой цементита является зернистая, она не приводит к значительному снижению пластических свойств стали. В реальной стали с 1,2%С (У12) количество вторичного цементита составляет всего около 6 %.

Кристаллизация чугунов.

Все превращения в белых чугунах, начиная от затвердевания и до комнатных температур, полностью проходят по метастабильной диаграмме Fe-Fe3C. Наличие цементита придает излому светлый блестящий цвет, что привело к термину “белый чугун”. Независимо от состава сплава обязательной структурной составляющей белого чугуна является цементитная эвтектика (ледебурит). На рис. изображена структурная диаграмма равновесия железо-цементит и кривые охлаждения типичных сплавов.

Железоуглеродистые сплавы состава 2,14 – 4.3%С называются доэвтектическими белыми чугунами. Рассмотрим процесс кристаллизации и вторичных превращений на примере сплава 3 (рис.8,б). От температуры несколько ниже линии ликвидус АС до 1147°С, из жидкости выделяются кристаллы аустенита. Аустенит кристаллизуется в форме дендритов, которые, как правило, обладают химической неоднородностью, называемой дендритной ликвацией. Состав жидкой фазы меняется по линии ликвидус, стремясь к эвтектическому, а твердой фазы по линии солидус, стремясь к составу точки Е. При температуре 1147 °С концентрация жидкой фазы достигает точки С (4,3 %С), а аустенита – точки Е (2,14 %С). Из жидкости эвтектического состава образуется смесь аустенита и цементита – ледебурит 1147 °С. Таким образом, ниже эвтектической линии ЕСF структура характеризуется избыточными кристаллами аустенита и эвтектикой (ледебуритом). При охлаждении от 1147 до 727°С состав аустенита непрерывно меняется по линии ЕS, при этом выделяется цементит вторичный. Он выделяется как из избыточного аустенита, так и из аустенита эвтектики. Однако, если вторичный цементит, выделяющийся из аустенита эвтектики, присоединяется к эвтектическому цементиту, то из избыточного аустенита он выделяется в виде оболочек вокруг дендритов аустенита и представляет собой самостоятельную структурную составляющую. Ниже 727°С весь аустенит: и избыточный, и тот, который входит в состав эвтектики – претерпевает эвтектоидное превращение, при котором образуется перлит. Таким образом, ниже 727 °С структура доэвтектического белого чугуна характеризуется следующими структурными составляющими: избыточным перлитом (бывшим аустенитом), ледебуритом превращенным, состоящим из перлита и цементита и цементитом вторичным

Железоуглеродистые сплавы с содержанием углерода от 4,3 до 6,67% (сплав 4, рис.8,б) называются заэвтектическими белыми чугунами. Кристаллизация начинается при температуре t13 несколько ниже линии СD выпадением цементита, который называется цементитом первичным. Состав жидкой фазы меняется по линии СD, состав твердой остается без изменения. При температуре 1147°С заканчивается кристаллизация избыточных кристаллов. Жидкость состава точки С (4,3 %С) согласно эвтектической реакции образует ледебурит. При дальнейшем охлаждении изменение состава аустенита по линии ЕS приводит к выделению цементита вторичного, который присоединяется к эвтектическому. Температура 727°С является температурой эвтектоидного равновесия аустенита, феррита и цементита. Ниже этой температуры аустенит превращается в перлит. Таким образом, ниже 727°С структура заэвтектического белого чугуна характеризуется избыточными кристаллами цементита первичного (белые пластины) и превращенным ледебуритом, состоящим из темных полосок или зернышек перлита и светлой основы – цементита.

Микроструктуры белых чугунов представлены на рис.9.

 

 

Рис. 9. Микроструктуры белых чугунов: а – доэвтектический белый чугун;

б – эвтектический белый чугун; в – заэвтектический белый чугун .

 

Сталь – основной металлический конструкционный материал, широко применяемый для инженерных сооружений, изготовления оборудования, машин, приборов и инструментов. Ее обширное использование обусловлено удачным сочетанием ценного комплекса механических, физико-химических и технологических свойств. Кроме того, она сравнительно недорогая и может производиться в любом количестве.

Механические свойства углеродистой стали зависят от содержания в ней углерода. С увеличением количества углерода повышается концентрация цементита и уменьшается количество феррита. Это вызывает увеличение прочности, твердости и снижение пластичности сплава.

Чугун до самой температуры плавления остается двухфазным, и одна из этих фаз – твердый хрупкий цементит, который не позволяет деформировать материал. Но чугуны кристаллизуются в относительно узком интервале температур, заканчивается кристаллизация образованием эвтектики при постоянной температуре. Такие сплавы имеют хорошие литейные свойства (высокую жидкотекучесть, малую усадку) и не образовывать литейных дефектов. Поэтому чугуны – сплавы литейные.

Надо еще отметить, что фазовые превращения в твердом состоянии позволяют упрочнять сталь термической обработкой. Для чугуна термообработка неэффективна, так как эвтектика – ледебурит – остается неизменной до температуры плавления.

– Конец работы –

Эта тема принадлежит разделу:

Диаграмма состояния железоуглеродистых сплавов

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ... ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ... САМАРСКИЙ ГОСУДАРСТВВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Кристаллизация стали

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Диаграмма состояния железоуглеродистых сплавов
Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых бо

Компоненты в диаграмме железо- углерод
Компонентами в сплавах железа с углеродом являются металл железо и неметалл углерод. В промышленности чистое железо практически не используется, а наиболее широко применяются его сплавы. О

Структурные составляющие системы железо-углерод
Твердые растворы внедрения углерода и других примесей в a-железе называют ферритом, а в g-железе – аустенитом. Феррит получил свое название от латинского наименования железа – «Ferrum». Ра

Влияние постоянных примесей на структуру с свойства стали.
К постоянным примесям относятся Mn, Si, S, P и газы O, N, H. Верхний предел присутствия S, P ограничивается 0,05%, Mn, Si – 0,08%. Марганецвводят в сталь для раскисления, т.е

Влияние углерода на свойства стали
Углерод – не случайная примесь, а важнейший компонент углеродистой стали, от количества которого завичсят ее свойства.

Применение сталей
Конструкционные углеродистые стали. На долю углеродистых сталей приходится 80% от общего объема производства стали. Эти стали дешевы и сочетают удовлетворительные механические свой

Структура, свойства и применение чугунов
Чугуны – это сплавы на основе железа, содержащие от 2 до 5 % углерода, а также марганец, кремний и вредные примеси. Это литейный и передельный материал. Допустимые кол

Виды термической обработки металлов.
Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка. Основы термической обработки разра

Закалка
Закалка – термообработка, которая проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышения твердости и прочности путем образования не

Старение
  Старение - термообработка, которая применяется к сплавам, которые были подвергнуты закалке без полиморфного превращения. Пересыщенный твёрдый раствор в таких сплавах термодин

Химико-термическая обработка
Химико-термической обработкой называют процессы, приводящие к диффузионному насыщению поверхностного слоя различными элементами. Химико-термическая обработка включает в себя одновременное

Термомеханическая обработка
Термомеханическая обработка – вид термической обработки, включающий в себя операцию пластической деформации, которая создавая повышенную плотность дефектов кристаллического строения, влияет тем

Основные фазовые превращения при термообработке стали
  Основой для изучения термической обработки стали является диаграмма железо – углерод (область сталей). При рассмотрении разных видов термообработки железо-углеродистых спла

Четыре основных превращения при термической обработке в стали
При термической обработке стали наблюдаются следующие превращения:   1. Превращение перлита в аустенит, протекающее выше точки А1. α

Превращение аустенита в перлит
При охлаждении стали с содержанием углерода 0,8% ниже А1 происходит распад аустенита с содержанием углерода 0,8% на феррит с содержанием 0,01%С и цементит с содержанием углерода 6,67%. В

Превращения мартенсита в перлит при отпуске
  Отпуском называют термическую операцию, заключающуюся в нагреве закаленной стали до температуры ниже Аc1, с последующей выдержкой и охлаждением с заданной скоростью. В пр

Отжиг стали
Отжиг стали– термическая обработка, заключающаяся в нагреве металла до определенной температуры, выдержки и охлаждении с отключенной печью (т.е. с минимально возможной скоростью

Отжиг доэвтектоидной стали.
Для доэвтектоидной стали применяют следующие виды отжига: -полный; -изотермический; -нормализация; -патентирование.  

Отжиг заэвтектоидной стали.
Для заэвтектоидной стали применяют неполный отжиг и нормализацию. Неполный отжиг.Заэвтектоидные стали подвергают неполному отжигу, так как полный отжиг приводит к появлени

Закалка стали
Закалка – это термическая операция, которая заключается в нагреве сплава до температуры выше критических точек и охлаждении с высокой скоростью. В зависимости от того происходит ли

Отпуск стали.
Закаленная сталь очень твердая, но она хрупкая, у нее низкая пластичность и большие внутренние напряжения. В таком состоянии изделие не работоспособно, не надежно в эксплуатации. Поэтому для уменьш

Способы закалки стали.
Выбор того или иного способа охлаждения при закалке определяется во-первых получением наибольшей прокаливаемости и во-вторых минимальным уровнем остаточных внутренних напряжений, чтобы уменьшить ко

Обработка стали холодом.
Обработку стали холодом применяют для уменьшения количества остаточного аустенита в закаленных высокоуглеродистых сталях. При охлаждении до -70..-1900С остаточный аустенит превращается в

Закалка с самоотпуском.
При сквозной прокаливаемости все точки детали имеют практически одинаковую твердость. Однако, для ударного инструмента типа зубил, долот, штампов необходимо иметь высокую твердость рабочей поверхно

Поверхностная закалка
  Для некоторых деталей при эксплуатации необходима высокая твердость и износостойкость поверхности в сочетании с хорошей вязкостью в сердцевине. Это касается деталей, работающих в ус

Прокаливаемость и закаливаемость стали.
Прокаливаемость важнейшая характеристика стали, определяющая выбор марки стали в зависимости от размеров закаливаемой заготовки. Закаливаемость стали характеризует твердость правильно зака

Термомеханическая обработка стали.
Термомеханическая обработка включает в себя пластическую деформацию, которая влияет на формирование структуры во время термического воздействия на металл. Пластическая деформация изменяет характер

Цементация
Цементацией называется процесс насыщения поверхностного слоя стали углеродом с целью повышения работоспособности деталей металлургических машин (всевозможные шестерни, зубчатые муфты и втулки, паль

Азотирование
Азотированием называется ХТО, при которой поверхностный слой детали насыщается азотом. Процесс осуществляется в атмосфере аммиака, который при нагревании разлагается. При этом увеличиваются не толь

Нитроцементация
Нитроцементацией называют процесс диффузионного насыщения поверхностного слоя стали одновременно углеродом и азотом при 840 – 860°С в газовой среде, состоящей из науглероживающего газа и амм

Цианирование
Цианированием называют также совместное насыщение поверхности стали углеродом и азотом вследствие окисления расплавленных цианистых солей при нагревании до 820 – 960 °С. Для получения слоя

Сульфоазотирование
Сульфоазотирование применяют для улучшения приработки, повышения износостойкости и противозадирных свойств, особенно при «сухом» и «полусухом» трении, применяют сульфоазотирование, т. е. одновремен

Борирование
Борирование стали - химико-термическая обработка насыщением поверхностных слоев стальных изделий бором при температурах 900...950°С. Цель борирования - повышение твердости, износостойкости и некото

Силицирование
Силицирование - поверхностное или объёмное насыщение материала кремнием. Силицирование производится обработкой материала в парах кремния, образующихся при высокой температуре над кремниевой засыпко

Диффузионное насыщение металлами
Насыщение поверхности стали металлами в ходе их высокотемпературной химико-термической обработки в соответствующих насыщающих средах называется диффузионной металлизацией. Целью такого вида химико-

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги