рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Кристаллизация и структурообразование сплавов.

Кристаллизация и структурообразование сплавов. - раздел Промышленность, В определить положение сплава, данного вариантом, на диаграмме состояния Сплав I. Критическая Точка I - Начало Кристаллизации Твердого Раство...

Сплав I.

Критическая точка I - начало кристаллизации твердого раство­ра α :

 

Критическая точка 2. - конец кристаллизации твердого раство­ра α.

 

При кристаллизации в интервале температур между точками 1-2 жидкая и твердая фазы изменяют состав. Изменение концентрации жид­кости определяется линией ликвидус АnВ, а концентрации твердого раствора - линией солидус АmВ. Например, в сплаве I при температу­ре t1 состав жидкой фазы соответствует точке c, твердой - точ­ке d , спроектированными на ось концентраций. По правилу отрезков количество твердой фазы

Структура сплава: зерна однородного твердого раствора α.

Диаграмма состояния сплавов, компоненты которой неограничен­
но растворимы в жидком состоянии, ограниченно- в твердом, при
кристаллизации образуют эвтектическую смесь (эвтектику) (рис.7):


АЕС - ликвидус

АВЕFС - солидус

АЕ - начало кристаллизации твердого раствора α

АВ - конец кристаллизации твердого раствора α

ЕС - начало кристаллизации твердого раствора β

СF- конец кристаллизации твердого раствора β

ВМ - ограничение растворимости компонента В в кристаллической

решетке компонента А.

FN- ограничение растворимости компонента А в кристаллической

решетке компонента В.

Точки В, F - максимальная растворимость компонентов друг в друге. Диаграмма отличается от диаграммы (рис.4) наличием двух об­ластей граничных твердых растворов α и β. Компоненты в чистом виде в сплавах этой системы макроскопически не присутствуют, а находятся только в виде твердых растворов α и β.

Кристаллизация и структурообразование в сплавах, состав которых находится в интервале проекций точек В и F .диаграммы (рис.7) на ось концентраций, происходят аналогично ранее рассмотренным примерам диаграммы с нерастворимыми в твердом состоянии компонентами, только вместо компонентов А и В присутствуют твердые растворы α и β.

Кристаллизация и структурообразование сплавов IV ( V )

Критическая точка I - начало кристаллизации твердого раствора. α(β), две фазы: жидкость и α(β). В интервале темпера­тур между точками 1 и 2 идет кристаллизация:

Критическая точка 2 - конец кристаллизации α(β), в структуре сплава осталась одна фаза - α(β). В интервале температур меж­ду точками 2 и 3 - охлаждение твердого раствора α(β). За счет снижения растворимости твердый раствор становится насыщенным. Критическая точка 3 - начало выделения вторичного твердого раство­ра βIIII) из пересыщенного твердого раствора α(β) вследствие уменьшения растворимости компонентов при снижении температу­ры. В интервале температур между точкой 3 и комнатной выделяется вторичный твердый раствор βIIII) .В структуре сплава две фазы:

IV - ; V - .

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что такое диаграмма состояния?

2. Какой метод положен в основу построения диаграммы олово-цинк?

3. Что называется компонентом, фазой?

4. Как определяется концентрация фаз?

5. Как определяется соотношение масс фаз?

6. Каковы особенности эвтектического сплава?

7. Нарисовать диаграмму состояния с ограниченной и неограниченной растворимостью компонентов в твердом состоянии и проставить все фазы.

8. Нарисовать диаграмму состояния, когда компоненты не растворяют­ся друг в друге, когда образуется устойчивое химическое соеди­нение, проставить все фазы.

9. Как определяется число степеней свободы в критических точках?

 

 

3. МЕХАНИЧЕСКИЕ СВОЙСТВА КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

3.1.УСЛОВИЯ РАБОТЫ И МЕТОДЫ ИСПЫТАНИЯ МАТЕРИАЛОВ

 

В широком смысле под механическими свойствами понимают параметры, которые дают информацию о поведении материала под действием внешних нагрузок. Количественные величины этих параметров обусловлены природой взаимодействия молекул и атомов в твердом теле, фазовым составом сплавов, их структурой. Изменения термодинамических параметров (температуры, давления, скорости нагружения) приводят к изменению сил взаимодействия, фазового состава и структуры, а, следовательно, к изменению свойств материалов.

Механические свойства позволяют определить пределы нагрузки для каждого конкретного материала, произвести сопоставимую оценку различных материалов, осуществить контроль качества и пригодность металла в заводских и лабораторных условиях. Результаты определения механических свойств используют в расчетной конструкторской практике при проектировании машин, приборов, конструкций.

К испытаниям механических свойств предъявляется ряд требований. Температурно-силовые условия проведения испытаний должны быть по возможности приближены к служебным условиям работы материалов в реальных изделиях. Вместе с тем методы испытаний должны быть достаточно простыми и пригодными для массового контроля качества.

Большое разнообразие условий эксплуатации материалов, повышение и расширение спектра требований к ним привело к разработке широкого круга методов определения свойств. В зависимости от скорости нагружения испытания являются статическими, когда нагружение производится медленно, нагрузка возрастает плавно или остается постоянной длительное время, либо динамическими, если нагрузка возрастает мгновенно (ударно). При повторно- переменных испытаниях изменяется величина и направление нагрузки. Испытания могут проводиться при комнатных, повышенных,отрицательных (криогенных) температурах. Различны и схемы нагружения образцов: растяжение, сжатие, изгиб, кручение, срез.

Каждая схема нагружения характеризуется коэффициентом «жесткости», представляющим собой отношение максимальных нормальных напряжений к максимальным касательным, которые возникают при испытаниях:

 

,

 

где Smax – максимальные нормальные напряжения,

τmax - максимальные касательные напряжения.

 

Значения коэффициента «жесткости» для различных видов испытаний

Таблица 3.1.

 

№п/п Вид испытаний Коэффициент « жесткости», α
Растяжение 2,0
Изгиб 1,35
Кручение 1,27
Сжатие 0,54
Твердость 0,22

 

Нормальные напряжения приводят к хрупкому разрушению материала, а касательные ответственны за пластичность. Поэтому, чем больше коэффициент «α» тем более хрупко разрушается материал при испытаниях.

При выборе способа испытания материалов учитывается коэффициент «жесткости». Мягкие и пластичные материалы (большинство цветных металлов и сплавов, малоуглеродистые стали для общего машиностроения, применяемые в сыром, незакаленном состоянии) испытываются на статическое растяжение и, по необходимости, динамический изгиб (ударную вязкость).

Стали среднеуглеродистые, применяемые в термически обработанном (закалка + отпуск на среднюю твердость) состоянии, часто работают на знакопеременные нагрузки. Поэтому, кроме прочностных испытаний на растяжение и динамических - на ударную вязкость, эти стали часто испытываются на повторнопеременное нагружение - усталость.

Для высокоуглеродистых инструментальных сталей, закаливаемых на высокую твердость, испытания на статическое растяжение являются «жесткими». Результаты испытаний имеют большой разброс, что создает определенные методические затруднения. Поэтому эти стали подвергают более «мягкому» способу нагружения: на статический изгиб и статическое сжатие. Проводятся и динамические испытания - на ударную вязкость.

Определение твердости является самым «мягким» видом испытания, пригодным для любых материалов. Методическая простота испытаний на твердость и доступность оборудования сделали этот вид испытаний универсальным. Наряду с вышеперечисленными методами испытаний твердость определяется для всех материалов в любом состоянии: упрочненном и неупочненном.

А такие сверхтвердые и хрупкие материалы, как твердые сплавы, подвергаются только испытаниям на твердость, все остальные виды испытаний являются для них «жесткими».

Стали и сплавы специального назначения подвергаются соответствующим видам испытаний. Например, жаропрочные стали подвергаются длительным ( до 10 и даже 30 тысяч часов ) статическим напряжениям при повышенных температурах (до 1100 - 1200°С). Износостойкие материалы подвергаются истиранию с определением потери веса при истирании. Материалы для атомной энергетики подвергаются радиационному облучению различными элементарными частицами с определением способности поглощать эти частицы и изменять или сохранять необходимые свойства.

 

3.2. МЕХАНИЧЕСКИЕ СВОЙСТВА КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

 

К основным механическим свойствам конструкционных материалов и сплавов, определяющим работоспособность и область их применения, относят: твердость, прочность, упругость, пластичность, вязкость, выносливость. Приведем краткие определения этих понятий.

Твердость– сопротивление материала проникновению в него другого более твердого тела.

Прочность– сопротивление материала разрушению при воздействии внешних напряжений.

Упругость- способность материала восстанавливать свои размеры и форму при снятии внешних напряжений. Не всегда упругость считают отдельной самостоятельной характеристикой материала. Часто упругость считают элементом прочностной характеристики материала.

Пластичность- способность материала приобретать остаточную (пластическую) деформацию при нагружении, менять размер и форму не разрушаясь.

Вязкость- это сопротивление материала динамическому, ударному воздействию нагрузки. Динамические испытания на ударный изгиб позволяют выявить склонность стали к хрупкому разрушению.

Выносливостьили сопротивление усталости - это способность металла сопротивляться процессу постепенного возникновения и развития трещин под влиянием многократных повторных силовых воздействий, величина которых намного меньше предельной прочностной нагрузки, за счет чего при таком разрушении не возникает видимой пластической деформации.

Все вышеназванные свойства имеют и количественные параметры. Эти параметры могут быть получены с использованием различных схем нагружения. Например, прочность можно оценить при растяжении, сжатии, изгибе, кручении. Естественно, что количественные параметры, полученные с использованием различных схем нагружения, будут существенно отличаться. Предел прочности для серых чугунов, определенный при растяжении, в два раза меньше предела прочности, полученного при изгибе, и в четыре раза меньше, определенного при сжатии. Имеет значение и скорость приложения нагрузки. С увеличением скорости предел прочности растет, для малоуглеродистой стали предел прочности при ударном нагружении на 30% выше, чем при статическом. Чтобы оценить пригодность какого-либо материала, выполнить приемо-сдаточные испытания, а особенно при арбитражных спорах, нужно провести количественную оценку его свойств в условиях, идентичных для подобного класса материалов. Соответствующие виды и способы испытаний оговорены в ГОСТах на каждый класс материалов. Уровень свойств стандартных широко используемых в практике материалов приводится в ГОСТах, справочной литературе или учебниках материаловедения.

 

3.3. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВЕННЫХ ХАРАКТЕРИСТИК МЕХАНИЧЕСКИХ СВОЙСТВ

Самым распространенным материалом в народном хозяйстве является конструкционная сталь. Поставляемая металлургами в виде проката (прутки, балки, трубы, листы и т.д.) и поковок, сталь используется для строительства мостов, газо- и нефтепроводов, ферм, строительных конструкций, для изготовления различных машин, станков, изделий широкого потребления и т.д. Как уже упоминалось, основными методами оценки свойств конструкционных сталей являются испытания на статическое растяжение, твердость, динамический изгиб и реже знакопеременные усталостные нагружения.

3.3.1. ИСПЫТАНИЯ НА СТАТИЧЕСКОЕ РАСТЯЖЕНИЕ

Испытания на растяжение при комнатной температуре проводят в соответствии с ГОСТ 1497-84 на разрывных машинах. В зависимости от принципа действия нагружающего механизма испытательные машины подразделяют на механические и гидравлические. Основной характеристикой разрывной машины является развиваемое ею максимальное усилие. Более мощные машины (Р > 20 т) выполняются, как правило, гидравлическими. На рис. 4.1. показан принцип работы гидравлической машины. Видно, что машина работает по принципу гидравлического пресса, по давлению в цилиндре определяют растягивающую силу, а смещение поршня, измеренное точным прибором, дает возможность определить изменение размера образца. Образцы изготавливают цилиндрическими или призматическими с головками на концах. Диаметр круглого образца может быть от 3 до 20мм, минимальная толщина плоских – 0,5мм.

Зависимость между усилием и изменением длины образца записывается автоматически с помощью диаграммного аппарата испытательной машины в виде кривой «растягивающая сила Р – абсолютное удлинение образца D ℓ» . Это так называемая «первичная машинная диаграмма», которая является результатом влияния двух переменных: механических свойств материала и величины испытуемого образца. Чтобы исключить влияние размеров образцов, от «первичной машинной» диаграммы переходят к «условной» или «удельной» в координатах «напряжение s - относительная деформация или удлинение e». Координаты точек на этой диаграмме определяют по формулам:

; ,

 

где F0 и ℓ0 исходное первоначальное сечение и первоначальная расчетная длина образца.

 

 

 

 

– Конец работы –

Эта тема принадлежит разделу:

В определить положение сплава, данного вариантом, на диаграмме состояния

Студент должен выполнить следующие пять пунктов работы над своим заданием... Классифицировать расшифровать марку и охарактеризовать область применения заданного вариантом сплава...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Кристаллизация и структурообразование сплавов.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

УЧЕБНЫЕ ПОСОБИЯ
  1. КЛАССИФИКАЦИЯ МАРКИРОВКА И ПРИМЕНЕНИЕ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ   1.1. КЛАССИФИКАЦИЯ МАТЕРИАЛОВ   В технике

Значения коэффициентов «k»для различных материалов
Таблица 4.3     Из таблицы видно, что значение коэффициен

Приготовление микрошлифов
  ВЫРЕЗКА. Вырезка образца из детали обычно производится механическим способом в необходимом для исследования месте, не допуская разогрева и пластической деформации, которые могут из­

Металлографический микроскоп.
  Металлографический микроскоп (рис.1) состоит из оптической системы, осветительного устройства с осветительной камерой и механической системы. Объект рассматривается в металлографиче

Определение величины зерна
  Размер кристаллических зерен определяется на протравленным микрошлифе. Величина зерна- один из факторов, влияющих на свойство сплавов. С укрупнением зерна понижаются ударная вязкост

Сплав 3. Доэвтектоидная сталь
  Ниже линии GS начинается полиморфное превращение аустенита в феррит. При этом содержание углерода в аустените изменяется по линии GS, то есть при температуре сплава t содержание угл

Зависимость механических свойств стали от содержания углерода
  Структура углеродистой стали после охлаждения состоит из двух фаз – феррита и цементита. Количество цементита в структуре стали, например в сплаве 5 (рис 3), определяется соотношени

Применение серых чугунов
Наличие графитных включений ослабляет металлическую ос­нову серых чугунов и снижает их прочность, как из-за уменьшения работающего сечения металлической основы, так и из-за того, что края графитных

Ускоренное охлаждение на воздухе приводит к распаду аустенита при
более низких температурах по сравнению с отжигом, что оп­ределяет различные свойства отожженной и нормализованной стали. Чем выше степень переохлаждения аустенита, т.е. ниже его темпера­тура распад

СПРАВОЧНЫЕ МАТЕРИАЛЫ
    ДИАГРАММЫ СОСТОЯНИЯ   ВАРИАНТ 1

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги