рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Состав углеводов

Состав углеводов - раздел Производство, Общие принципы технологии криогенного охлаждения мяса индейки Состав Углеводов. Одним Из Основных Углеводов Мышечной Ткани Является Гликоге...

Состав углеводов. Одним из основных углеводов мышечной ткани является гликоген – важнейший энергетический материал. он расходуется при мышечной работе и накапливается при отдыхе.

Содержание его зависит от тренированности и упитанности птицы, а также физиологического состояния.

Мышечный гликоген представляет собой сильно разветвленный поли- сахарид, построенный из сотен молекул глюкозы. молекулярная масса его равна 1*10^6. Большая степень разветвленности мышечного гликогена необ- ходима, поскольку действию ферментов подвергаются концы молекулы; чем больше свободных концов, тем быстрее может быть использована молекула гликогена или быстрее может быть заново синтезирована во время таких периодов клеточного метаболизма, когда происходит его регенерация.

В пе- риод распада молекул гликогена наряду с последовательным разрушением его боковых цепей под действием эндоамилаз происходит и образование его частей – «затравок», которые также могут затем расти за счет присоединения глюкозы. Мышечная ткань отличается высокой концентрацией ферментов и факторов системы, синтезирующей гликоген. В мышечных волокнах обнаруживается определенная связь гликогена с миофибриллами. Наблюдается локализация гликогена у анизотропных дис- ков и он не обнаруживается в изотропных.

Кроме того, гликоген более или менее равномерно распределен в саркоплазме ( с преобладанием в около- ядерной саркоплазме). Возможно, что связь гликогена с миозином анизотропных дисков миофибрилл и миогеном саркоплазмы обеспечивает необходимый темп расщепления полисахарида при его гликолитическом рас- паде. В этих превращениях более лабильной является фракция легкораство- римого гликогена. Наряду с этим труднорастворимый гликоген метаболичес- ки не инертен и является резервом, находящимся в состоянии непрерывного обновления.

В процессе интенсивной мышечной работы гликоген подвергается ана- эробному гликолитическому распаду с образованием молочной кислоты. В процессе превращения гликогена образуются фосфорные эфиры гексоз и триоз, пировиногралная кислота и другие продукты распада, однако количес- тво их относительно невелико. Гликоген распадается в мышцах не только фосфорилитическим, но и гидролитическим (амилолитическим) путем под дествием-амилазы, нейтра- льной -амилазы, олиго-1,4 – 1,4-глюкантрансферазы и амило-1,6-глюкозида- зы. В качестве конечных продуктов такого распада гликогена образуются глюкоза, линейные и разветвленные олигоглюкозиды.

Дальнейшее расщеп- ление олигоглюкозидов осуществляется специфичными -олигоглюкозида- зами (13). Витамины Витамины представлены в таблице 7(20). Таблица 7 Витамины в 100 г. продукта (тушки индейки первой категории) Витамин А, мг…0,01 -каротин, мг…сл. Витамин Е, мг…0,34 Витамин В6, мг… 0,33 Витамин В12, мкг…- Биотин, мкг… Витамин С, мг… Ниацин, мг… 7,8 Пантотеновая кислота, мг….0,65 Рибофлавин, мг… 0,22 Тиамин, мг… 0,05 Фолацин, мкг… 9,6 Холин, мг…139 Свойства воды, входящей в состав сырья Содержание воды в мышцах колеблется в зависимости от возраста птицы: чем она моложе, тем больше влаги в мышцах.

Неодинаково содержание воды в различных группах мышц и уменьшается по мере увеличения содержания жира. Вода, входящая в состав мышечной ткани, не- однородна по физико-химическим свойствам и роль ее неодинакова.

Различают две формы воды – свободную и связанную. Свободная жидкая вода имеет квазикристаллическую, тетраэдрическую координирован- ную структуру. Она ограничена степенями свободы за счет образования водородных связей между отдельными молекулами. Этим объясняется высо- кая диэлектрическая постоянная воды. С помощью тяжелой воды и примене- ния метода ядерно-парамагнитного резонанса установлено, что свободная во- да мышечной ткани также имеет явно выраженную подобную координиро- ванную, тетраэдрическую структуру.

Другая часть воды находится в связан- ном состоянии – ионная и гидратная вода, активно удерживаемая главным образом белковыми веществами и некоторыми другими химическими компонентами клеток (например, углеводами, липидами). Такое состояние объясняется наличием химической или физико-химической связи между водой и веществом. Около 70% воды ткани ассоциируется с белками мио- фибрилл.

Гидратация белковых молекул обусловлена полярными свойствами мо- лекул воды (дипольным строением) и наличием функциональных групп (аминных, карбоксильных, гидроксильных, пептидных и др.) в молекуле бел- ков. При этом диполи воды образуют гидратные слои вокруг активных групп и белковой молекулы в целом. При гидратации часть воды, связываясь с гидрофильными группами белка, располагается вокруг белковых молекул в виде мономолекулярных слоев. Первые слои удерживаются довольно прочно, а последующие – значительно слабее, располагаясь в виде рыхлого диффузного облака.

Окружая функциональные группы соседних белковых цепей, связанная вода существенно влияет на стабилизацию их простран- ственной конфигурации, и, следовательно, определяет их функциональную деятельность. На некоторых участках молекул белков могут образоваться водные мостики. Связанная вода удерживается белком довольно прочно. Она характери- зуется рядом специфических свойств: более низкая точка замерзания, мень- ший объем, отсутствие способности растворять вещества, инертные в химическом отношении ( находящиеся в небольших концентрациях) – сахара, глицерин, некоторые соли. Связанная вода составляет 6-15% от масс- сы ткани. За слоем гидратной воды расположены слои относительно слабо удер- живаемых молекул воды, представляющей собой раствор различных веществ это свободная вода. В ткани ее содержится от 50 до 70%. Удерживается она большей частью за счет осмотического давления и адсорб- ции структурами клеток – сеткой белковых мембран и белковых волокон, а также в результате заполнения макро- и микрокапиллярных внутриклеточ- ных и межклеточных пространств ткани. Поэтому такую воду рассматривают как иммобилизованную воду, которая в значительном количестве сравните- льно легко может быть удалена из ткани (13). Характеристика ферментов сырья Мышечная ткань осуществляет свои функции благодаря активному участию ферментных систем, специфически локализованных в структурах ткани.

Ферментные системы обеспечивают получение большого количества энергии, необходимой для осуществления мышечной деятельности. Мышечные клетки характеризуются большой концентрацией ферментов гли- колиза, а также ферментов числа трикарбоновых кислот и дыхательной цепи. Считается, что осуществление гликолиза и связанное с ним выделение энергии не нуждается в высокой дифференциации структурно-ферментного аппарата, а поэтому протекает в матриксе саркоплазмы.

Вместе с тем разли- чные воздействия на мышечную ткань повышают интенсивность гликолити- ческих процессов, что может свидетельствовать о выходе ферментов из ограничивающих структур и их активации.

В матриксе саркоплазмы содержатся многие ферменты синтеза белков, липидов и полисахаридов.

Аэробное окисление продуктов обмена происходит в митохондриях (саркосомах). Большинство ферментов, участвующих в процессах окисления, обнаруживается именно в этих органеллах. Во всех мышечных клетках мито- хондрии занимают значительную часть саркоплазмы, и в каждой из них го- раздо больше крист ( складчатые внутренние мембраны митохондрий), чем в менее многочисленных митохондриях других клеток. процессы, протекаю- щие в складчатых внутренних мембранах митохондрий при участии локализованных в них ферментных систем, играют основную роль в снабже- нии мышечной клетки энергией.

Разные мышцы в зависимости от функциональных особенностей харак- теризуются различным соотношением концентрации ферментных систем, ка- тализирующих анаэробные и аэробные превращения.

Так, в красных мышеч- ных волокнах содержится больше митохондрий, чем в белых; активность дыхательных ферментов в них в 6 раз больше, чем в белых. В белых мышцах интенсивность анаэробного гликогенолиза примерно в 2 раза выше, чем в красных. Интенсивность окисления жиров в мышцах относительно невелика, но после углеводов они являются важнейшим источником энергии. При недос- татке углеводов в процессы обмена вовлекается большее количество жиров.

К циклу трикарбоновых кислот непосредственно примыкают реакции окис- ления жирных кислот. В митохондриях обнаружены ферменты, окисляющие жирные кислоты. Такие процессы обмена аминокислот, как дезаминирование и переами- нирование, также примыкают к циклу трикарбоновых кислот. Многие ферменты дезаминирования аминокислот обнаружены в митохондриях. Син- тез многих аминокислот, как и «непрямое» их дезаминирование, осуществля- ется реакциями переаминирования. Переаминирование аминокислот связано с активностью аминофераз, содержащихся в митохондриях. Вместе с тем ферменты переаминирования обнаружены также в жидкой части саркоплазмы.

Таким образом, в митохондриях мышц содержатся сложные фермен- тные системы, составляющие единый комплекс, к которому примыкают фер- менты других компонентов клетки. Изменение физико-химического состоя- ния этих органелл сказывается на активности их ферментов. Деструкция ми- тохондрий нарушает координированное осуществление сложного комплекса взаимосвязанных процессов обмена, происходящих в них. Саркоплазматический ретикулум содержит, кроме активируемой иона- ми магния АТФ-азы, также обладающую очень высокой активностью АМФ-аминогидролазу.

В ядрах содержатся гликолитические, окислительные, гидролитические ферменты, а также ферменты белкового синтеза. Кроме того, в ядрах имеют- ся ферменты синтеза нуклеиновых кислот (ДНК-полимераза и РНК-полиме- раза). С миофибриллами связана основная АТФ-азная активность, которой, как известно, обладает миозин и она зависит от присутствия катионов Na , K , Li , Ca , Mg , NH . Очищенный миозин активируется ионами кальция и ингибируется ионами магния.

Наряду с этим имеется также растворимая АТФ-аза, отличная от миозина, содержащаяся в различных структурах клет- ки: в ядрах, митохондриях и мембранных элементах саркоплазмы. Это АТФ-аза активируется ионами магния. АТФ-азной активностью обладает определенная часть молекулы мио- зина – его компонент – Н-миозин. Многократно переосажденный миозин наряду с АТФ-азной активностью АМФ-аминогидролазы, ацетилхолинэсте- разы. Активность этих ферментов сосредоточена в L-миозине.

Кроме того, миофибриллы характеризуются глютаминазной активностью. В проявлении активности ферментов в миофибриллах играют роль фосфолипиды. При де- липировании миофибрилл в них резко снижается активность АТФ-азы, АМФ-аминогидролазы и ацетилхолинэстеразы. В сарколеммной мембране обнаружено наличие АМФ-аминогидролазы и весьма активной ацетилхолинэстеразы.

К рибосомным относят ферменты, принимающие участие на тех стади- ях синтеза белка, которые происходят на рибосомах. Эти ферменты участву- ют в прикреплении, передвижении и отделении от рибосомной поверхности И-РНК и Т-РНК; перенос недостроенных полипептидов от одной молекулы Т-РНК и сопутствующее образованию пептидной связи. К рибосомным ферментам относят также рибонуклеазу 1, ГТФ-азу и др. Лизосомы содержат клеточные гидролазы: кислую рибонуклеазу, дезоксирибонуклеазу, кислую фосфатазу, катепсины, эстеразы, гликозидазы.

В живой клетке эти ферменты могут действовать в основном на фагоцити- рованный материал, попавший внутрь лизосомы. Мышечной клетке это необходимо для обновления ее важнейших структур и компонентов. Если целостность лизосомы нарушена, то гидролазы высвобождаются и перевари- вают компоненты клетки. Наличие в лизосомах липопротеидной мембраны надежно удерживает гидролитические ферменты и предотвращает переваривание субстратов мы- шеечного волокна тотчас после убоя. Однако в дальнейшем, под воздействи- ем различных факторов, происходит высвобождение гидролаз Структурно-механические свойства сырья Структурно-механические характеристики представляют собой фундаментальные физические свойства продуктов.

Они проявляются при механическом воздействии на обрабатываемый продукт и характеризуют его сопротивляемость приложенным извне усилиям, обусловленную строением и структурой продукта. Эти характеристики используются для расчета процес- сов в рабочих органах машин с целью определения их механических пара- метров (геометрических, кинематических и динамических); они отражают существенные аспекты качества продуктов.

Кроме того, структурно-механи- ческие характеристики учитываются при расчете различных физических процессов (22). Сдвиговые характеристики. В я з к о с т ь к р о в и. Кровь состоит из плазмы и форменных элемен- тов. Плазма составляет 60% объема крови и представляет собою сложный раствор, содержащий белки, глюкозу, холестерин и его эфиры, фосфатиды, жиры и свободные жирные кислоты, небелковые азотистые и минеральные вещества.

Форменные элементы крови (40%) представлены красными кровя- ными шариками (эритроциты), белыми (лейкоциты) и кровяными пластинка- ми (тромбоциты). Общее представление о составе крови дано на рис. (1). Сухие вещества плазмы крови (7). Б М Л С Аз Ф Г А Рис. (1). Б – Белки, 7,5%; Ф – Фибриноген, 0,2%; Г – Глобулины, 2,8-3,0%; А – Альбумины, 4,3%; М – Минеральное вещество, 1%; Л – Липиды, 1%; С – Сахар, Аз – Азотистые вещества.

При увеличении концентрации сухих веществ вязкость крови возрастает и уменьшается при увеличении температуры, что наглядно видно из табл. 8-10. В таблицах приведены данные исследований пищевой стабилизированной крови и плазмы, полученной из этой же крови промышленным сепарирова- нием. Концентрирование осуществляется ультрафильтрацией на лаборатор- ной установке. Вязкость измеряли с помощью вискозиметра Гепплера и рео- вискозиветра Ротовиско.

Таблица 8 Зависимость вязкости крови *10^3 (в Па*с) от концентрации сухих веществ и температуры Концентрация сухих веществ, кг на 1 кг крови Температура, С 10 20 30 40 0,261 92 59 46 36 0,213 31 19 14 10 0,182 15 10 7 5 0,152 11 7 6 4 Данные таблицы 8 получены при градиенте скорости 380 с ^(-1), а табл. 9 – при температуре 20 С. Следует отметить, что при концентрации 0,261 кровь представляет собой типичную степенную жидкость. Таблица 9 Зависимость вязкости крови *10^3 (в Па*с) от концентрации сухих веществ и градиента скорости Концентрация сухих веществ, кг на 1 кг крови Градиент скорости, с 40 100 200 380 570 0,261 109 85 71 59 53 0,213 41 27 21 19 18 0,182 10 10 10 10 10 0,152 7 7 7 7 7 Таблица 10 Зависимость вязкости плазмы крови *10^3 ( в Па*с) от концентрации и температуры Концентрация сухих веществ, кг на 1 кг крови Температура, С 10 20 30 40 0,1920 18,3 12,0 8,3 6,7 0,1635 11,5 7,7 5,5 4,5 0,1190 5,6 3,9 2,9 2,4 0,0835 3,1 2,3 1,8 1,5 При меньшей концентрации изменения эффективной вязкости от гра- диента скости не описываются степенным законом, а плазма крови представ- ляет собой ньютоновскую жидкость (см. табл. 10). При повышении концен- трации сухих веществ вязкость крови возрастает менее интенсивно по сравнению с вязкостью бульона.

Компрессионные характеристики.

К о м п р е с с и н н ы е х а р а к т е р и с т и к и ц е л ы х т к а н е й м я с а п р и о б ъ е м н о м с ж а т и и. Характеристики изучали с помощью цилиндров с поршнями при одностороннем нагружении. Объем цилиндра 0,0009 м^3, пределы изменения гидростатического давления – от 1*10^5 до 13*10^5 па. При этом были определены следующие реологические характе- ристики: мгновенный модуль упругости давления 11,6*10^5 ^0,4; макси- мальная деформация при длительности действия давления 180 с – 1,34* *10^(-5) ^0,78; кинетика изменения относительных деформаций после разгрузки – 7,5*10^(-7) ^0,61   exp(-8,9&#61 533; & #61483; &amp ;#61472;^0,78 (где  - длитель- ность восстановления объема, с; пределы изменения &amp ;#61472;от 0 до 10с). Прочностные характеристики.

П р о ч н о с т н ы е х а р а к т е р и с т и к и ц е л ы х т к а н е й м я с а. При растяжении предел прочности различных мышц мяса определил Николаев.

Длина образцов составляла от 0,01 до 0,02 м при поперечном сечении 0,005*0,002 м или 0,0075*0,002 м; скорость растяжения составляла 3*10^(-5) или 6*10^(-5) м/с. По-видимому если считать мясо нелинейным реологическим телом, то прочностные характеристики будут зависеть от геометрических размеров образца и кинематики нагружения.

Авторы установили корреляционную связь между прочностными ха- рактеристиками и органолептической оценкой нежности. Их данные показы- вают, что для сырого мяса напряжение разрыва зависит от вида мышцы (длиннейшая мышца спины, полусухожильная, трапецевидная мышцы); для вареного мяса такой дифференциации не наблюдается.

С улучшением неж- ности (более высокая органолептическая оценка в баллах) напряжение разрыва и модуля упругости уменьшаются, причем для сырого мяса эта зависимость более пологая, для вареного – более крутая. П р о ч н о с т н ы е х а р а к т е р и с т и к и ц е л ы х т к а н е й м я с а п р и с р е з е. Прочность мяса при срезе через матрицу исследовали с помощью пуансонов с углами заточки 90, 80 и 30. В процессе взаимодей- ствия пуансона с материалом производили одновременную регистрацию усилий и деформаций на автоматических самопишущих приборах КСП-4. Образцы мяса толщиной 0,015 м при температуре от +10 до -1,5 С исследовали на прочность при резании поперек волокон при постоянной скорости перемещения пуансона 4,6*10^(-3) м/с. Разрушение структуры пуансоном происходит в две стадии.

При де- формации мяса до 90+5% мышечные волокна разрезаются непосредственно режущей кромкой пуансона. Соединительная ткань, как более прочная, уплотняется и срезается при увеличении деформации до 98+0,3%, т.е. когда пуансон начинает входить в отверстие, выполняющее роль матрицы.

Значения величин усилий разрезания мышечных волокон, приведенных к единице длины режущей кромки пуансона, соответственно равны для пуансона с углом заточки 90 - 3,85*10^3 Н/м, 80 - 3,52*10^3 Н/м и 30 – 2,68* 10^3 Н/м. Величины предельных усилий при полном срезе образца изменяют- ся в зависимости от угла заточки пуансонов от 5,4*10^3 до 6,2*10^3 Н/м, при этом деформация образцов приближается к 98%. Влияние масштабного фактора рассматривали при срезе образцов, высоту которых изменяли от 0,005 до 0,015 м. При увеличении высоты образцов уменьшается величина напряжения среза, вычисленная по началь- ной высоте образцов.

При изменении высоты образцов от 0,005 до 0,015 м предельное усилие среза увеличивается от 2,7*10^3 до 6,2*10^3 Н/м и соответственно линейно уменьшается напряжение – от 5,4*10^5 до 4,1*10^5 Па. При резании мяса лезвием наименьшие энергозатраты соответствуют углу встречи ножа и продукту около 60. При скорости подачи мяса от 0,05 до 0,09 м/с, при угле заточки ножа 18 и 25 и угле встречи 50-60 удельные усилия резания различаются незначительно и составляют 6000-7000 н/м. Плотность.

П л о т н о с т ь к о с т и. Плотность приведена в таблице 11 и 12. Данные довольно близки по значению. Некоторое различие объясняется, по-видимому, тем, что авторы по-разному именовали кости.

Имеются данные о плотности реберной кости, величина которой определена равной 1300-1380 кг/м^3. Однако они существенно превышают данные других авторов. Насыпная плотность кости интенсивно меняется с увеличением давле- ния. Этот процесс сопровождается разрушением и уплотнением кости. Масса кости характеризует ее с естественными внутренними полостями и макропо- рами. Масса плотной части кости без естественных пустот будет больше.

Укладочная масса кости делением массы обваленной кости, уложенной в емкость вручную с наименьшими пустотами, на объем, в который кость укладывали. Таблица 11 Плотность кости Кость Насыпная плотность, кг/м^3 Средняя плотность, кг/м^3 До дробления После дробления Рядовая 163-175 600-700 - Трубчатая 800-825 900-950 1730 Плотная масса - - 1300-1590 Очищенная плотная масса - - 1900-2400 Свежая с соединительной тканью - - 1400-1750 Обезжиренная сухая - - 1700-1900 Таблица 12 Плотность и укладочная масса кости Кости Средняя плотность, кг/м^3 Укладочная плотность, кг/м^3 Кости скелета 1260 412 Шейные и спинные позвонки 1200 486 Тазовая кость 1275 333 Кости конечностей задних передних 1270 1340 558 423 Кости позвонка с отростками ребер 1220 336 Фрикционные характеристики.

В н е ш н е е т р е н и е м я с а. Исследования проводили на трибо- метре с тележкой, движение которой сообщалось от электродвигателя. образец продукта высотой 0,005 м^2, рамку устанавливали на исследуемую поверхность, в течение 60 с создавали предварительный контакт, затем включали осциллограф и электродвигатель. тележка имела четыре скорости смещения: 0,00547; 0,0171; 0,0342; 0,0513 м/с. В динамическом режиме истинные коэффициенты трения зависят от скорости смещения, материала пластин, но не зависят от давления контакта; при этом липкость остается практически постоянной, что обусловлено весьма малым временем контакта продукта с поверхностью.

Для начала движения процесс усложняется. при различных давлениях контакта липкость должна была бы быть различной, но нередко через экспериментальные точки можно в пределах ошибки эксперимента провести одну линию, т.е. для различных давлений контакта липкость остается постоянной(22).

– Конец работы –

Эта тема принадлежит разделу:

Общие принципы технологии криогенного охлаждения мяса индейки

Между тем, по данным Международного института холода, ежегодно теряется 20-30% всех производимых в мире продуктов питания, что составляет почти… Реально же холод применяют для сохранения примерно половины этого… Все большую популярность приобретает использование криогенных температур (низких температур). Наиболее развитой…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Состав углеводов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Азотистые вещества и аминокислотный состав белков
Азотистые вещества и аминокислотный состав белков. Из азотистых небелковых веществ мышечной ткани выделяют: Карно- зин, ансерин, карнитин, креатин, креатинфосфат, аденозинтрифосфорная кислота, кото

Технологическая схема
Технологическая схема. Приемка Убой и обескровливание Тепловая обработка Снятие оперения Туалет тушек Полупотрошение Полное потрошение Формовка Охлаждение Маркировка Упаковка Транспортировка Хранен

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги