рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Заземление технических средств

Заземление технических средств - раздел Производство, Основные технические способы защиты от ПЭМИН Необходимо Помнить, Что Экранирование Тспи И Соединительных Линий Эффективно ...

Необходимо помнить, что экранирование ТСПИ и соединительных линий эффективно только при правильном их заземлении. Поэтому одним из важнейших условий по защите ТСПИ является правильное заземление этих устройств.
В настоящее время существуют различные типы заземлений. Наиболее часто используются одноточечные, многоточечные и комбинированные (гибридные) схемы .
На Рисунке 15.4 представлена одноточечная последовательная схема заземления.

 


Рисунок 15.4 – Одноточечная последовательная схема заземления


Эта схема наиболее проста. Однако ей присущ недостаток, связанный с протеканием обратных токов различных цепей по общему участку заземляющей цепи. Вследствие этого возможно появление опасного сигнала в посторонних цепях.
В одноточечной параллельной схеме заземления (Рисунок 15.5) этого недостатка нет. Однако такая схема требует большого числа протяженных заземляющих проводников, из-за чего может возникнуть проблема с обеспечением малого сопротивления заземления участков цепи. Кроме того, между заземляющими проводниками могут возникать нежелательные связи, которые создают несколько путей заземления для каждого устройства. В результате в системе заземления могут возникнуть уравнительные токи и появиться разность потенциалов между различными устройствами.

 

 

Рисунок 15.5 – Одноточечная параллельная схема заземления.


Многоточечная схема заземления (Рисунок 15.6) практически свободна от недостатков, присущих одноточечной схеме. В этом случае отдельные устройства и участки корпуса индивидуально заземлены. При проектировании и реализации многоточечной системы заземления необходимо принимать специальные меры для исключения замкнутых контуров.

 

Рисунок 15.5 – Многоточечная схема заземления

 

Как правило, одноточечное заземление применяется на низких частотах при небольших размерах заземляемых устройств и расстояниях между ними менее 0,5∙λ. На высоких частотах при больших размерах заземляемых устройств и значительных расстояниях между ними используется многоточечная система заземления. В промежуточных случаях эффективна комбинированная (гибридная) система заземления, представляющая собой различные сочетания одноточечной, многоточечной и плавающей заземляющих систем .
Заземление технических средств систем информатизации и связи должно быть выполнено в соответствии с определенными правилами. Основные требования, предъявляемые к системе заземления, заключаются в следующем:
• система заземления должна включать общий заземлитель, заземляющий кабель, шины и провода, соединяющие заземлитель с объектом;
• сопротивления заземляющих проводников, а также земляных шин должны быть минимальными;
• каждый заземляемый элемент должен быть присоединен к заземлителю или к заземляющей магистрали при помощи отдельного ответвления. Последовательное включение в заземляющий проводник нескольких заземляемых элементов запрещается;
• в системе заземления должны отсутствовать замкнутые контуры, образованные соединениями или нежелательными связями между сигнальными цепями и корпусами устройств, между корпусами устройств и землей;
• следует избегать использования общих проводников в системах экранирующих заземлений, защитных заземлений и сигнальных цепей;
• качество электрических соединений в системе заземления должно обеспечивать минимальное сопротивление контакта, надежность и механическую прочность контакта в условиях климатических воздействий и вибрации;
• контактные соединения должны исключать возможность образования оксидных пленок на контактирующих поверхностях и связанных с этими пленками нелинейных явлений;
• контактные соединения должны исключать возможность образования гальванических пар для предотвращения коррозии в цепях заземления;
• запрещается использовать в качестве заземляющего устройства нулевые фазы электросетей, металлоконструкции зданий, имеющие соединение с землей, металлические оболочки подземных кабелей, металлические трубы систем отопления, водоснабжения, канализации и т.д.
Сопротивление заземления определяется главным образом сопротивлением растекания тока в земле. Величину этого сопротивления можно значительно понизить за счет уменьшения переходного сопротивления между заземлителем и почвой путем тщательной очистки перед укладкой поверхности заземлителя и утрамбовкой вокруг него почвы, а также подсыпкой поваренной соли.
Таким образом, величина сопротивления заземления будет в основном определяться сопротивлением грунта.
Удельное сопротивление различных грунтов (т.е. электрическое сопротивление 1 см3 грунта) зависит от влажности почвы, ее состава, плотности, температуры и т.п., и колеблется в очень широких пределах (см. табл. 2.3) .

Таблица 15.4 - Значения удельного сопротивления различных грунтов.

Тип Грунта Удельное сопротивление (ρ), Ом/см3
среднее минимальное максимальное
Золы, шлаки, соляные отходы 2 370 7 000
Глина, суглинки, сланцы 4 060 16 300
То же с примесями песка 15 800 1 020 135 000
Гравий, песок, камни с небольшим количеством глины или суглинков 94 000 59 000 458 000


Хорошо проводящие грунты теряют свои свойства при отсутствии влаги. Для большинства грунтов 30% содержания влаги достаточно для обеспечения малого сопротивления. Например, для суглинков удельное сопротивление при влажности 5% составляет 165 000 Ом/см3, а при влажности
30% - 6 400 Ом/см3 .
При промерзании сопротивление грунтов резко возрастает. Например, для суглинков удельное сопротивление при влажности 15% и температуре 20°С составляет 7 200 Ом/см3, при температуре 5°С - 79 000 Ом/см3, а при температуре 15°С - 330 000 Ом/см3 .
Орошение почвы вокруг заземлителей 2 ... 5 процентным соляным раствором значительно (в 5 ... 10 раз) снижает сопротивление заземления .
Учесть все факторы, влияющие на проводимость почвы, аналитическим путем практически невозможно, поэтому при устройстве заземления величину удельного сопротивления грунта в тех местах, где предполагается размещение заземления, определяют опытным путем.
В качестве одиночных стержневых заземлений целесообразно использовать медные заземляющие стержни, конструкция которых приведена на Рисунке 15.6

Эффективными являются сеточные заземления а также комбинация сеточных и стержневых.

 


Рисунок 15.6 – Типовые стержни заземлений: 1 – скользящий молот; 2- подвижный упор; 3 – соединительная медная шина; 4 – головка с фаской;

5 – зажим; 6 – стержень; 7 – заостренный конец для забивки в грунт

 

 

Рисунок 15.7 – Комбинированное заземление из стержней и сетки: 1 – поверхность земли; 2 – сетка; 3 – сварное соединение; 4 – зажим; 5 – медный провод; 6 – медный стержень заземления

При необходимости устройства высокочастотного заземления нужно учитывать не только геометрические размеры заземлителей, их конструкцию и свойства почвы, но и длину волны высокочастотного излучения. Суммарное высокочастотное сопротивление заземления Zs складывается из высокочастотного сопротивления магистрали заземления Zм (провода, идущего от заземляемого устройства до поверхности земли) и из высокочастотного сопротивления самого заземлителя Zs (провода, металлического стержня или листа, находящегося в земле).
Величина заземления в основном определяется не сопротивлением заземления, а сопротивлением заземляющей магистрали. Для уменьшения последнего следует стремиться прежде всего к уменьшению индуктивности заземляющей магистрали, что достигается за счет уменьшения ее длины и изготовления магистрали в виде ленты, обладающей по сравнению с проводом круглого сечения меньшей индуктивностью. В тех случаях, когда индуктивность заземляющей магистрали можно сделать весьма небольшой или использовать ее для получения последовательного резонанса при блокировании излучающих сетей защитными конденсаторами на землю (например, при комплексном подавлении излучения в помещениях), целесообразно значительно уменьшить величину сопротивления заземлителя Zs. Уменьшить величину Zs можно также многократным заземлением из симметрично расположенных заземлителей .
При этом общее сопротивление заземления будет тем меньше, чем дальше друг от друга расположены отдельные заземлители.
При устройстве заземления в качестве заземлителей чаще всего применяются стальные трубы длиной 2 ... 3 м и диаметром 35 ... 50 мм и стальные полосы сечением 50 ... 100 мм.
Наиболее пригодными являются трубы, позволяющие достигнуть глубоких и наиболее влажных слоев земли, обладающих наибольшей проводимостью и не подвергающихся высыханию или промерзанию. Однако здесь необходимо учитывать, что с уменьшением сопротивления грунта возрастает коррозия металла. Кроме того, применение таких заземлителей не связано со значительными земляными работами, что неизбежно, например, при выполнении заземления из металлических листов или горизонтально закладываемых в землю металлических лент и проводов.
Заземлители следует соединять между собой шинами с помощью сварки. Сечение шин и магистралей заземления по условиям механической прочности и получения достаточной проводимости рекомендуется брать не менее (24х4) мм2.
Проводник, соединяющий заземлитель с контуром заземления, должен быть луженым для уменьшения гальванической коррозии, а соединения должны быть защищены от воздействия влаги.
Магистрали заземления вне здания необходимо прокладывать на глубине около 1,5 м, а внутри здания - по стене или специальным каналам таким образом, чтобы их можно было внешне осматривать. Соединяют магистрали с заземлителем только с помощью сварки. К заземляемому устройству ТСПИ магистраль подключают с помощью болтового соединения в одной точке.
Для уменьшения сопротивлений контактов наилучшим является постоянное непосредственное соединение металла с металлом, полученное сваркой или пайкой. При соединении под винт необходимо применять шайбы (звездочки или Гровера), обеспечивающие постоянство плотности соединения.
При соприкосновении двух металлов в присутствии влаги возникает гальваническая и (или) электрическая коррозия. Гальваническая коррозия является следствием образования гальванического элемента, в котором влага является электролитом. Степень коррозии определяется положением этих металлов в электрическом ряду.
Электрическая коррозия может возникнуть при соприкосновении в электролите двух одинаковых металлов. Она определяется наличием локальных электротоков в металле, например, токов в заземлениях силовых цепей.
Наиболее эффективным методом защиты от коррозии является применение металлов с малой электрохимической активностью, таких, как олово, свинец, медь. Значительно уменьшить коррозию и обеспечить хороший контакт можно, тщательно изолируя соединения от проникновения влаги.


 

– Конец работы –

Эта тема принадлежит разделу:

Основные технические способы защиты от ПЭМИН

На сайте allrefs.net читайте: Основные технические способы защиты от ПЭМИН.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Заземление технических средств

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные технические способы защиты от ПЭМИН
В зависимости от используемых средств техничнские способы защиты информации подразделяются на пассивные и активные. Пассивные способы защиты информации направлены на: a) Ослаблени

Экранирование технических средств
  Функционирование любого технического средства обра­ботки информации связано с протеканием по его токове- дущим элементам электрических токов различных частот и образованием разности

Экранирование проводов и кабелей
Наряду блоками аппаратуры экранированию подлежат и монтажные провода и соединительные линии. Чтобы уменьшить уровень ПЭМИ, необходимо особенно тщательно выполнять соединение оболочки провода (э

Фильтрация информационного сигнала
Одним из методов локализации опасных сигналов, циркулирующих в технических средствах и системах обработки информации, является фильтрация. В источниках электромагнитных полей и наводок фильтрация о

Пространственное и линейное зашумление
Реализация пассивных методов защиты, основанных на применении экранирования и фильтрации, приводит к ослаблению уровней побочных электромагнитных излучений и наводок (опасных сигналов) ТСПИ и тем с

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги