рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Белки пищевого сырья

Белки пищевого сырья - раздел Производство, Теоретические основы пищевых производств. Исследования Белки Злаков Анализируя Аминокислотный Состав Суммарных Белков Разли...

Белки злаков

Анализируя аминокислотный состав суммарных белков различных злаковых культур с точки зрения состава эталонного белка для питания людей (ФАО, 1973) следует отметить, что все они, за исключением овса, бедны лизином (2,2-3,8%), а за исключением риса и сорго - изолейцином. Для белков пшеницы, сорго, ячменя и ржи характерно относительно небольшое количество метионина (1,6-1,7 мг/100 г белка). Белки пшеницы к тому же содержат недостаточное количество треонина (2,6%), а белки кукурузы - триптофана (0,6%). Наиболее сбалансированными по аминокислотному составу являются овес, рожь и рис.

Аминокислотный состав суммарных белков злаковых культур определяется аминокислотным составом отдельных фракций, в основу классификации которых положен принцип растворимости (Т. Осборн, 1907). При последовательной обработке муки или размолотого зерна водой, 5-10%-м раствором хлорида натрия, 60-80%-м водным раствором спирта и 0,1-0,2%-м раствором гидроксида натрия экстрагируются белковые фракции, соответственно названные альбуминами, глобулинами, пролами-нами и глютелинами. В таблице 2.3 приводится процентное содержание белковых фракций в зерновых культурах. В состав белков входят и так

называемые склеропротеины (нерастворимые белки), содержащиеся в оболочках и периферических слоях зерна. Особенностью белков данной фракции является прочное соединение с лигнино-полисахаридным комплексом. Склеропротеины выполняют структурную функцию и малодоступны для пищеварения. Наряду с белками в зерне содержится небелковый азот (0,7-12,9% от общего азота), включающий свободные аминокислоты (50-60%), пептиды, нуклеотиды и др. Количество небелкового азота-изменяется в зависимости от степени зрелости, выравненнос-ти и прорастания зерна.

Таблица2.3. Содержание белковых фракций в зерне злаковых

Культура Азот фракций (в % от белкового азота)
Альбумины Глобулины Проламины Глютелины Склеропротеины
Пшеница мягкая 5,2 12,6 35,6 28,2 8,7
Рожь 24,5 13,9 31,1 23,3 7,2
Ячмень 6,4 7,5 41,6 26,6 17,9
Кукуруза 9,6 4,7 29,9 40,3 15,5
Овес 7,8 32,6 14,3 33,5 11,8
Гречиха 21,7 42,6 U 12,3 23,3
Рис 11,2 4,8 4,4 63,2 16,4

Для альбуминов отличительной особенностью является высокое содержание лизина (3,9-8,2%), треонина (2,4-7,7%), метионина (1,7- 3,3%), изолейцина (3,1-6,0%) и триптофана (6,7-16,9%). Наиболее высоким содержанием лизина отличаются альбумины овса, риса и проса (6,5-8,2%), более низким - альбумины пшеницы, ячменя и ржи (3,9-4,5%). Высокое количество треонина (4,7-7,7%) характерно для альбуминов ячменя, ржи, овса; низкое (2,4%) - для альбуминов пшеницы.

Глобулиновая фракция злаковых культур беднее, чем альбуминовая по содержанию лизина (2,8-6,0%), триптофана (0,5-1,3%) и метионина (1,1-2,7%). Обе фракции отличаются высоким содержанием глютами-новой и аспарагиновой кислот, но низким - пролина.

Характерной особенностью проламинов является высокое содержание остатков глутаминовой кислоты (13,7-43,3%), пролина (6,3-19,3%) и малое количество ионогенных групп, так как дикарбоновые кислоты почти полностью амидированы. Проламины отличаются низким содержанием лизина. Очень мало его в зеине кукурузы (0,2%), глиадине пшеницы и секалине ржи (0,6-0,7%). Высокий процент лизина (3,3%)

наблюдается в авенине овса. Небольшое количество лизина в проламинах и относительно большое содержание данной фракции в суммарном белке отражается на общей несбалансированности зерна большинства злаковых культур. Проламины бедны к тому же треонином, триптофаном, аргинином и гистидином. Зеин кукурузы, оризин риса и кафирин сорго отличаются высоким уровнем лейцина (16,9-18,6%). По содержанию цис-тина и метионина среди отдельных злаков также наблюдаются различия. Так, глиадин пшеницы в среднем содержит 1,2% метионина и-1,9% цис-тина, а авенин овса - 3,7 и 4,2%, соответственно.

Глютелины по аминокислотному составу занимают промежуточное положение между проламинами и глобулинами. Содержание лизина, аргинина, гистидина в них больше, чем в проламинах. Так, содержание лизина в глютенине пшеницы составляет 2,6%, ржи - 2,3%, ячменя - 4,0%, а овса - 5,0%. По содержанию лизина и цистина между сортами зерна наблюдаются некоторые различия. Например, глютенин пшеницы слабого сорта Акмолинка 1 содержит меньше цистина (5,18%), чем глютенин сильного сорта Саратовская 29 (7,34%). Глютелины ячменя, риса и овса отличаются от глютенина пшеницы более высоким уровнем лизина. Если учесть, что у риса 80% всего белка приходится на глютелины (оризенин), то понятно, почему обеспечивается удовлетворительное содержание лизина (2,6-4,0%) в общем белке рисового зерна. Преобладающими фракциями овса являются глобулины и глютелины, содержащие 5,0-5,5% лизина, что также обеспечивает хорошую сбалансированность данной культуры по лизину.

Белки неравномерно распределяются между морфологическими частями зерна. Основное их количество (65-75%) приходится на эндосперм, меньшее - на алейроновый слой (до 15,5%) и зародыш (до 22%). В алейроновом слое и зародыше концентрация белка высокая^ В зародыше пшеницы содержится 33,3% белка, кукурузы - 26,5%, овса - 19,4%. Алейроновый слой пшеницы и кукурузы содержит более 19% белка. В эндосперме белки распределены также неравномерно, концентрация их снижается по мере продвижения от субалейронового слоя к центру. Субалейроновым слоем называется периферическая зона зерновки, находящаяся под алейроновым слоем. Содержание белка в данной части зерна достигает у кукурузы 27,7%, у сорго 29-30%, у ячменя 21-24%, у риса 29%. Центральная часть эндосперма содержит мало белка (7-9%). В общем же распределение белка по частям зерновки зависит от вида культуры, ее сорта и почвенно-климатических условий выращивания.

Белки зародыша и алейронового слоя представлены в основном альбуминами и глобулинами, выполняющими каталитическую функцию при прорастании зерна (ферменты), а белки эндосперма - альбуминами, глобулинами, проламинами и глютелинами. Большую часть белков

эндосперма злаковых культур (до 80%) составляют запасные белки: спирторастворимые проламины и щелочерастворимые глютелины. Альбумины и глобулины входят в состав мембран органелл зерна, образуют рибосомы, митохондрии, эндоплазматический ретикулум, являются составной частью сложных белков - нуклеопротеидов, липопротеи-дов, фосфопротеидов.

Запасные белки эндосперма злаков сосредоточены в белковых телах, имеющих более простое строение, чем алейроновые зерна (белковые тела алейронового слоя). Алейроновое зерно состоит из кристаллоида (гли-копротеида), глобоида (калиевой, магниевой соли фитиновой кислоты) и основного белкового вещества - аморфной зоны.

У кукурузы и сорго белковые тела эндосперма состоят из матрицы и вдавленных в нее округлых белковых гранул. Матричные белки являются глютелинами, а белки гранул - проламинами. Матричный белок характеризуется однородной структурой, тогда как белковые гранулы имеют пластинчатую структуру с входящими в нее липопротеинами. В эндосперме зрелого зерна пшеницы откладываются белковые образования в виде непрерывной белковой матрицы клиновидной формы и в виде выпуклых серповидных зон под мембраной, окружающей крахмальные зерна. С этими представлениями соотносится классификация Гесса (Hess, 1954), по которой белки муки разделяются на промежуточные (цвикель) и прикрепленные (хафт). Промежуточные белки располагаются между крахмальными зернами и соответствуют белковой матрице, а прикрепленные представляют собой остатки мембран крахмальных зерен. У ржи и пшеницы прикрепленные белки характеризуются лучшим аминокислотным составом. При размоле твердых и стекловидных мягких пшениц раскол компонентов происходит через крахмальное зерно и запасной белок, в результате чего крахмальные зерна разрушаются. При размоле зерна с мучнистым эндоспермом трещины образуются не в крахмальных зернах, а вокруг них, так как между белком и крахмалом существует относительно слабое взаимодействие.

Белковые фракции зерновых культур представляют собой гетерогенную смесь отдельных компонентов, сходных по ряду физико-химических свойств. В то же время компоненты отличаются по электрофорети-ческой подвижности, молекулярной массе, аминокислотному составу и способности взаимодействовать друг с другом при помощи различных типов связей. В альбуминах мягкой пшеницы электрофорезом в ПААГ и крахмальном геле обнаружено 14-21 субъединиц, преобладающими среди которых по количеству являются субъединицы с молекулярной массой около 11 и 20 кД. Эти компоненты различаются по содержанию лизина, аланина, триптофана и гистидина, они отсутствуют в твердой пшенице.

В эндосперме мягкой пшеницы обнаружены доминирующие ос-глобулины с молекулярной массой 24 кД, в зародыше - γ-глобулины с молекулярной массой 210 кД. К глобулинам относят и специфические белки, выделенные в кристаллической форме из бензинового экстракта муки (пуротионин пшеницы, гордотионин ячменя). В зерне они содержатся в виде липопротеинового комплекса, имеют молекулярную массу около 7 кД. Положительного влияния этих белков на хлебопекарные свойства муки не установлено.

С помощью ионообменной хроматографии, гельхроматографии, электрофореза и других методов глиадиновая фракция пшеницы разделена на большое число индивидуальных компонентов. Электрофоретические компоненты глиадина условно объединяют в порядке уменьшения электрофорети-ческой подвижности в кислой среде в четыре группы: α-, β-, γ- и ωглиадины, каждая из которых состоит из нескольких компонентов. Общее число белковых компонентов в пшенице может достигать 40-50. При строго определенных условиях электрофореза в ПААГ или крахмальном геле электрофоретический спектр рассматривается как генотипический признак вида и сорта пшеницы (рис. 2.13). Эталонный спектр содержит 30 позиций, которые распределяются по фракциям следующим образом:


Рис. 2.13.Эталонный электрофоретический спектр глиадина пшеницы [В. Конарев, 1983]

В соответствии с этим эталоном глиадин сорта Лютесценс 230, например, записывается так:

α 567 β 2345 γу2345 ω34689

Большинство глиадиновых белков построено из одной полипептидной цепи с молекулярной массой 30-45 кД и внутримолекулярными ди-сульфидными связями (рис. 2.14). В меньшем количестве в состав глиадина


Рис. 2.14.Дисульфидные связи в глиадине и глютенине

входят белки с молекулярной массой 22; 25,6; 48,8; 57,3 кД и 64-80 кД, а также димеры, построенные из одноцепочных молекул главного типа (36,5 и 44,2 кД). От других компонентов в большей степени отличаются ω-глиадины, имеющие слабый заряд, высокое содержание глутамина, глу-таминовой кислоты, пролина, гидрофобных остатков аминокислот и не содержащие цистина и метионина и, соответственно, внутримолекулярных дисульфидных связей. В питательном отношении со-глиадины являются ценными как источники -NH2 групп и пролина, необходимых для биосинтеза аминокислот и азотистых оснований. Дополнительно в состав глиадина входят низкомолекулярные белки (5-10%) типа альбуминов, глобулинов (11-12 кД) и высокомолекулярная фракция ("низкомолекулярный глютенин") с молекулярной массой 104-125 кД (6%).

Проламины других злаков также образуют индивидуальные электро-форетические спектры, поэтому, как и у пшеницы, они используются в роли белковых маркеров для определения видовой и сортовой принадлежности при выведении новых сортов, основываясь на зависимости ценных хозяйственных признаков зерна (урожайность, засухоустойчивость, неспособность к полеганию и др.) от присутствия конкретных компонентов.

Глютенин пшеницы является более гетерогенной белковой фракцией по сравнению с глиадином. Он состоит из многих компонентов с молекулярной массой от 50 до 3000 кД и без разрыва дисульфидных связей не способен мигрировать в гель при электрофорезе. Восстановленный глютенин разделяется при электрофоретическом анализе не менее чем на 15 компонентов, состоящих из одной полипептидной цепи с молекулярными массами от 11,6 до 133 кД. Некоторые из них идентичны молекулам глиадина (36-44,6 кД), другие - молекулам альбуминов и глобулинов (11,6 кД), а третьи представляют собой специфические высокомолекулярные субъединицы (102, 124, 133 кД). Эти данные позволяют

утверждать, что глютенин - это белок, построенный из многих полипептидных цепей, соединенных между собой дисульфидными связями. Расчеты показывают, что на каждую полипептидную цепь глютенина приходится 2-3 дисульфидные связи с соседними цепями (Эварт, 1968).

Изучению запасных белков, особенно глютенина, отводится важная роль, однако структура их остается до конца не выясненной. Главной трудностью при выяснении особенностей строения является способность белков к агрегации, которую трудно преодолеть известными в настоящее время методами. До сих пор изучаются значения молекулярных масс компонентов и целого белка этой фракции. Так, по последним данным отечественных ученых, глютенин состоит из белковых частиц, включающих несколько субъединиц с молекулярной массой всего 100-300 кД, тогда как на долю частиц сверхвысокой молекулярной массы и одноцепочных молекул приходится не более 20%.

Предложены несколько гипотез строения глютенина и клейковины, однако ни одна из них не дает полного ответа на вопросы взаимосвязи его особенностей с природой вязко-эластичных свойств пшеничного теста. До конца не выяснен вопрос, чем отличаются глютелины зерновых культур, способных и не способных к формированию клейковинного комплекса. По представлениям Эверта, это различие обусловлено неодинаковым способом соединения отдельных полипептидных цепей через дисульфидные мостики при образовании полимерных молекул глю-телинов. Каждая полипептидная цепь, соединяясь с другими, может увеличиваться в длину, образуя структуру линейного типа. Если же полипептидные цепи соединяются большим количеством поперечных ди-сульфидных мостиков, то возникает разветвленная трехмерная структура, обладающая относительно высокой компактностью. Глютелины зерновых культур, образующих клейковину, обладают линейной структурой в отличие от глютелинов культур, не способных формировать ее (овес, кукуруза).

Реологические свойства клейковины и теста получают более полное обоснование, если принять линейную структуру глютенина, тогда и вязкость теста из пшеницы, ржи и ячменя можно объяснить сильным раскручиванием достаточно гибких цепей и постоянным перемещением их относительно друг друга. Свойство эластичности возникает вследствие тенденции растянутых, незакрученных полипептидных цепей возвратиться к их прежней конформации. Причиной же отсутствия вязко-эластичных свойств овсяного и кукурузного теста является ветвящийся способ соединения полипептидных цепей, характеризующийся трехмерной разветвленной структурой.

Во всем мире интенсивно проводятся исследования, посвященные зависимости хлебопекарных качеств пшеницы от полипептидного состава

глютениновой фракции в связи с различиями сортов и классов на генетическом уровне. Установлено, что наиболее выраженное влияние на реологические свойства клейковины и качество хлеба оказывает присутствие высокомолекулярных субъединиц глютенина (100 кД) или соотношение высоко- и низкомолекулярных субъединиц. Всего обнаружено около 25 субъединиц с высокой молекулярной массой, 3-5 из них присутствует в каждом сорте. Каждой субъединице присвоен номер в зависимости от подвижности в ПААГ с ДДС-Na, и выясняется конкретная роль ее в обеспечении качества зерна. Например, 98% американских сортов пшеницы, характеризующиеся высокой "силой" и хорошей эластичностью теста, содержат субъединицы 5+10, синтез которых кодируется хромосомой 1Д, тогда как у английских пшениц с низким качеством они встречаются только у 19% образцов. Такая же картина наблюдается и в отношении высокомолекулярных субъединиц 7+8 и 7+9, кодируемых хромосомой В1.

Реологические свойства клейковины и качество пшеничного хлеба зависят не только от присутствия высокомолекулярных субъединиц (60%), но и от наличия хромосомы 1BL/1RS (7%), полиморфизма низкомолекулярного глютенина, глиадина (а-, Р-, у-, со-), количества белка и активности а-амилазы (31%). Глютенин придает клейковине упругие свойства, а глиадин обуславливает растяжимость и связность, то есть ни глютенин, ни глиадин в отдельности не обладают характерными реологическими свойствами клейковины, только взаимодействие этих фракций в едином комплексе создает клейковинный белок со всеми присущими ему особенностями. Предполагают, что "полипептидные цепи глиадина в разных местах и разными связями соединяются с полимеризо-ванными молекулами глютениновой фракции, объединяя их в сложную трехмерную сетку переплетающихся полипептидных цепей" (А. Вакар, 1975). В структуре такой сетки значительную роль помимо ковалентных дисульфидных связей играют нековалентные взаимодействия: водородные, электростатические (ионные) связи и гидрофобное взаимодействие. Всем им отводится важная роль при объяснении различий в реологических свойствах крепкой и слабой клейковины (растяжимости, связности, упругости, эластичности).

Аминокислотный состав клейковинного белка и соотношение глиа-диновой и глютениновой фракций не являются показателями его качества, тогда как растворимость, содержание водородных, дисульфидных связей и вискозиметрические характеристики соотносятся с различиями реологических характеристик клейковины. Крепкая клейковина отличается от слабой меньшей растворимостью в разных растворителях, большим количеством водородных и дисульфидных связей, меньшими значениями характеристической вязкости (η), удельного

гидродинамического объема и осевого отношения частиц (в/а). Частицы крепкой клейковины имеют уплотненную структуру, слабой - разрыхленную.

Более высокая скорость агрегации белков клейковины хорошего качества при действии на них солей свидетельствует о большей роли гидрофобных взаимодействий в структуре крепкой клейковины по сравнению со слабой. Установлен больший вклад этих видов взаимодействий в агрегацию глютенина и его фракций. Для упругой, эластичной клейковины на долю белков глютенина, перешедшего в раствор за счет разрыва гидрофобных связей, приходится 25,4%, ионных- 17,3%, водородных - 56,3%, в то время как для неупругой и растяжимой клейковины распределение белка по растворимости составляет, соответственно, 7,1; 12,8 и 80,1 %. Излишняя "гидрофобизация" поверхности белковых молекул (действие жирных кислот, тепловая денатурация и т.д.) приводит к ухудшению реологических свойств клейковины (связности), снижению гидратации и растворимости. Таким образом, разная степень упругости, растяжимости и связности определяется различным соотношением сил ковалентного и нековалент-ного характера (гидрофобные, ионные, водородные связи) как внутри фракций клейковины, так и на уровне взаимодействия их друг с другом.

Признавая за глиадином и глютенином главенствующую роль в обеспечении качества клейковины, необходимо учитывать роль небелковых соединений в формировании ее структуры. Высокая реакционная способность химических группировок молекул белка делает возможным взаимодействие их с липидами и углеводами и образование, соответственно, липопротеиновых и гликопротеиновых комплексов, оказывающих влияние на структуру и свойства клейковины. Общепризнана гипотеза, по которой фосфолипиды являются составной частью липопротеина, выполняющего роль слоистой структуры между белковыми пластинками и обеспечивающего деформацию скольжения (Гросскрейтц, 1960). В целом же особенности взаимодействия белков и других веществ зерна остаются до конца не изученными.

С клейковинным комплексом пшеницы находятся во взаимодействии протеазы, их белковые ингибиторы, амилазы и липоксигеназа (табл. 2.4). Протеазы извлекаются щелочным раствором соды, р-амилаза - водным

Таблица 2.4. Ферментативная активность белков клейковины [М. Попов, 1998]

Растворитель Растворенный белок, % Активность ферментов, ед/r клейковины
Протеазы Липоксигеназа β-Амилаза
Сода 0,35%-я Спирт 70%-й Глугатион 0,75%-й 23,3 49,1 92,7 5,94 0 0 0 0 780 0 1560 9835

раствором спирта, а липоксигеназа и β-амилаза - раствором глютатио-на. В покоящемся зерне ферменты не проявляют своей активности, тогда как при прорастании они участвуют в распаде и превращениях запасных питательных веществ. Не менее важная роль отводится ферментам и при тестоведении. Протеазы, частично дезактивируя белки, ослабляют клейковину, липоксигеназа, при участии которой продукты окисления жирных кислот окисляют -SH группы белка, укрепляет ее. Высвобождение липоксигеназы из клейковины происходит в присутствии восстановленного глютатиона, с другой стороны, это же соединение, принимая участие в тиоловом обмене с клейковиной, уменьшает количество S-S связей и ослабляет ее. Таким образом, ферментные системы в комплексе с клейковинными белками выступают в роли регулятора качества хлеба из пшеницы.

Среди злаковых культур особого внимания заслуживает белковый комплекс первой искусственно созданной зерновой культуры, полученной

Таблица2.5. Аминокислотный состав белков муки (в г на 100 г белка)

Аминокислота Яровая рожь Тритикале Твердая пшеница
Лизин 3,49 2,80 2,29
Гистидин 2,14 2,34 2,37
Аргинин 4,55 4,77 3,64
Аспарагиновая кислота 6,82 5,67 4,62
Треонин 3,26 3,05 2,82
Серии 4,11 4,37 4,37
Глутаминовая кислота 30,51 32,91 35,78
Пролин 15,29 14,18 13,92
Глицин 3,82 3,87 3,52
Алании 4,06 3,55 3,27
Цистин 2,65 3,22 2,66
Валин 5,22 4,93 4,77
Метионин 2,15 2,25 2,14
Изолейцин 4,21 4,37 4,51
Лейцин 6,65 7,55 7,46
Тирозин 2,16 2,81 2,67
Фенил аланин 5,16 4,98 5,48
Аммиак 3,40 3,25 3,91

при скрещивании пшеницы (Triticum) и ржи (Secale) - тритикале. С точки зрения питательности тритикале - ценная культура, так как ее отличает относительно высокий уровень белка (11,7-22,5%) и улучшенный аминокислотный состав по сравнению с пшеницей. Аминокислоты в тритикале содержатся, как правило, в количествах, промежуточных между родительскими формами (табл. 2.5). Более высокое содержание лизина, метионина и других аминокислот существенно для пищевой ценности. В данной культуре геномы ржи и пшеницы не взаимодействуют между собой с образованием "новых" белков, поэтому их электрофореграммы являются идентичными электрофореграммам смеси белков родительских форм.

По сравнению с пшеницей тритикале содержит больше водорастворимых и солерастворимых белков, но меньше - спирторастворимых и значительно меньше - белков нерастворимого остатка, поэтому в хлебопечении она может использоваться только в смеси с пшеничной мукой или с улучшителями.

56 :: 57 :: 58 :: 59 :: 60 :: 61 :: 62 :: 63 :: 64 :: 65 :: 66 :: Содержание

66 :: 67 :: 68 :: 69 :: 70 :: 71 :: 72 :: Содержание

– Конец работы –

Эта тема принадлежит разделу:

Теоретические основы пищевых производств. Исследования

Пищевая химия Учебник для студентов вузов обучающихся по направлениям Технология продуктов питания А П Нечаев Светлана Евгеньевна... В книге рассматривается химический состав пищевых систем его полноценность и... Теоретические основы пищевых производств Исследования Пищевая химия...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Белки пищевого сырья

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

БЕЛКИ В ПИТАНИИ ЧЕЛОВЕКА. ПРОБЛЕМА БЕЛКОВОГО ДЕФИЦИТА НА ЗЕМЛЕ
Белки в питании человека занимают особое место. Они выполняют ряд специфических функций, свойственных только живой материи. Белковые вещества наделяют организм пластическими свойствами, заключающим

БЕЛКОВО-КАЛОРИЙНАЯ НЕДОСТАТОЧНОСТЬ И ЕЕ ПОСЛЕДСТВИЯ. ПИЩЕВЫЕ АЛЛЕРГИИ
Белковая недостаточность является важнейшей проблемой питания. Бедно живущие семьи на фоне недостаточно калорийной пищи потребляют мало белка, в результате чего возникает синдром дистрофии, который

АМИНОКИСЛОТЫ И ИХ НЕКОТОРЫЕ ФУНКЦИИ В ОРГАНИЗМЕ
Общее число встречающихся в природе аминокислот достигает около 300. Среди них различают: а) аминокислоты, входящие в состав белков; б) аминокислоты, образующиеся из других аминокислот, но только п

НЕЗАМЕНИМЫЕ АМИНОКИСЛОТЫ. ПИЩЕВАЯ И БИОЛОГИЧЕСКАЯ ЦЕННОСТЬ БЕЛКОВ
Все живые организмы различаются по способности синтезировать аминокислоты, необходимые для биосинтеза белков. В организме человека синтезируется только часть аминокислот, другие должны доставляться

СТРОЕНИЕ ПЕПТИДОВ И БЕЛКОВ. ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ПЕПТИДОВ
До середины XX в. считалось, что пептиды не являются самостоятельным классом органических соединений, а представляют собой продукты неполного гидролиза белков, которые образуются в ходе перевариван

Белки бобовых культур
Основную часть семядолей бобовых культур (сои, гороха, фасоли, вики) составляют запасные белки, являющиеся в соответствии с классификацией Осборна глобулинами. Кроме того, в семенах содержится небо

Белки масличных культур
У масличных семян основной запасающей тканью для белков и ли-пидов является паренхима семядолей (подсолнечник, хлопчатник, рапс), эндосперм (семена клещевины, кориандра) или одновременно паренхима

Белки картофеля, овощей и плодов
Относительно низкое содержание азотистых веществ в картофеле (около 2%), овощах (1,0-2,0%) и плодах (0,4- 1,0%) свидетельствует о том, что данные виды пищевого растительного сырья не играют значите

Баклажаны Перец
РНК ................................. 0,27-0,32 ..... 0,13-0,31 ДНК ................................. 0,21-0,36 ..... 0,14-0,22 Фосфор .............................. 5,5-7,2 .....

Белки мяса и молока
Мясо, молоко и получаемые из них продукты содержат необходимые организму белки, которые благоприятно сбалансированы и хорошо усваиваются. Белки мышечной ткани мяса животных полноценны, по

НОВЫЕ ФОРМЫ БЕЛКОВОЙ ПИЩИ. ПРОБЛЕМА ОБОГАЩЕНИЯ БЕЛКОВ ЛИМИТИРУЮЩИМИ АМИНОКИСЛОТАМИ
Основным направлением научно-технического прогресса в области производства продовольствия в последние три десятилетия является интенсификация процессов приготовления пищи с одновременным приданием

ФУНКЦИОНАЛЬНЫЕ СВОЙСТВА БЕЛКОВ
Растительные белки находят применение в производстве пищевых продуктов в качестве ингредиентов питательной, технологической и лечебно-профилактической значимости благодаря присущим им уникальным фу

ПРЕВРАЩЕНИЯ БЕЛКОВ В ТЕХНОЛОГИЧЕСКОМ ПОТОКЕ
Нативная трехмерная структура белков поддерживается разнообразием внутри- и межмолекулярных сил и поперечных связей. Любое изменение условий среды в технологических потоках производства пищевых про

КАЧЕСТВЕННОЕ И КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ БЕЛКА
Присутствие белков в пищевых объектах устанавливается с помощью качественных реакций, которые условно разделяют на две группы: а) цветные реакции; б) реакции осаждения. Среди первой группы

Моносахариды
Моносахариды обычно содержат от 3 до 9 атомов углерода, причем наиболее распространены пентозы и гексозы. По функциональной группе они делятся на альдозы и кетозы. Моносахариды находятся о

Полисахариды
Олигосахариды.Это полисахариды 1-го порядка, молекулы которых содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахари

ФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ УГЛЕВОДОВ
Углеводам в питании человека принадлежит чрезвычайно важная роль. Они являются главным источником энергии для человеческого организма, необходимой для жизнедеятельности всех клеток, тканей и органо

Усваиваемые и неусваиваемые углеводы
С точки зрения пищевой ценности углеводы подразделяются на усваиваемые и неусваиваемые. Усваиваемые углеводы – моно- и олигосахариды, крахмал, гликоген. Неусваиваемые – целлюлоза, гемицеллюлозы, ин

Углеводы в пищевых продуктах
Углеводы составляют 3/4 сухой массы растений и водорослей, они содержатся в зерновых, фруктах, овощах и в других продуктах. Главными усваиваемыми углеводами в питании человека являются кра

Гидролиз углеводов
Во многих пищевых производствах имеет место гидролиз пищевых гликозидрв, олигосахаридов и полисахаридов. Гидролиз зависит от многих факторов: рН, температуры, аномерной конфигурации, комплекса ферм

Реакции дегидратации и термической деградации углеводов
При переработке пищевого сырья в пищевые продукты эти реакции занимают важное место. Они катализируются кислотами и щелочами, и многие из них идут по типу β-элиминации. Пентозы, как главный пр

Реакции образования коричневых продуктов
Потемнение пищевых продуктов может иметь место в результате окислительных или неокислительных реакций. Окислительное или ферментативное потемнение – это реакция между фенольным субстратом и кислоро

Окисление в альдоновые, дикарбоновые и урановые кислоты
Действие окислителей.Способность альдоз к окислению также имеет значение для пищевых продуктов. При определенных условиях возможно окисление в альдоновые кислоты, причем β-фор

Процессы брожения
Брожение – процесс (в котором участвуют углеводы), используемый в ряде пищевых технологий: во время тестоприготовления при изготовлении хлеба, в производстве пива, кваса, спирта, вина и других прод

Гидрофильность
Гидрофильность – одно из основных физических свойств углеводов, полезных для пищевых продуктов. Гидрофильность обусловлена наличием многочисленных ОН-групп. Они взаимодействуют с молекулой воды пос

Связывание ароматических веществ
Для многих пищевых продуктов, при получении которых используются разные виды сушки, углеводы являются важным компонентом, способствующим сохранению цвета и летучих ароматических веществ

Образование продуктов неферментативного потемнения и пищевого аромата
Как уже отмечалось, реакции неферментативного потемнения дают окрашенные меланоидиновые пигменты и много разнообразных летучих компонентов. Именно они ответственны за тот или иной запах

Сладость
Ощущение сладости во рту при потреблении низкомолекулярных углеводов характеризует еще одну важную функцию их в пищевых продуктах. В табл. 3.12 дана характеристика относительной сладости различных

Структурно-функциональные свойства полисахаридов
Все полисахариды, присутствующие в пищевых продуктах, выполняют ту или иную полезную роль, связанную с их молекулярной архитектурой, размером и наличием межмолекулярных взаимодействий, обусловленны

Крахмал
Крахмал – растительный полисахарид со сложным строением. Он состоит из амилозы и амилопектина; их соотношение различно в различных крахмалах (амилозы 13–30%; амилопектина 70–85%). Амилоза

Гликоген
Гликоген находится в пищевых продуктах в очень небольших количествах, благодаря малому содержанию в мясной ткани и печени. Это гомоглюкан, подобный по структуре крахмальному амилопектину; он содерж

Целлюлоза
Целлюлоза – компонент клеточных стенок. Она обычно ассоциируется с различными гемицеллюлозами и лигнином; и тип и размер этих ассоциаций образует характерную текстуру пищевых растений. Однако больш

Гемицеллюлозы
Известно, что клеточные стенки растений представляют собой комплексную матрицу, состоящую из целлюлозы, лигнина и гемицеллюлоз. Гемицеллюлозы – класс полисахаридов, неусваиваемых человеческим орган

Пектиновые вещества
Пектин содержится в растительных пищевых продуктах, например, в фруктах и овощах. В растительной клетке пектин выполняет функцию структурирующего агента в центральном слое клеточной стенки. Кроме т

МЕТОДЫ ОПРЕДЕЛЕНИЯ УГЛЕВОДОВ В ПИЩЕВЫХ ПРОДУКТАХ
Моно- и олигосахариды.Для определения этих углеводов используют их восстанавливающую способность. Сначала их извлекают из пищевых продуктов 80%-м этиловым спиртом. Спиртовые экстра

СТРОЕНИЕ И СОСТАВ ЛИПИДОВ. ЖИРНОКИСЛОТНЫЙ СОСТАВ МАСЕЛ И ЖИРОВ
Липидами (от греч. lipos – жир) называют сложную смесь органических соединений с близкими физико–химическими свойствами, которая содержится в растениях, животных и микроорганизмах. Липиды широко ра

Гидролиз триацилглицеринов
Под влиянием щелочей, кислот, фермента липазы триацилглицерины гидролизуются с образованием ди–, затем моноацилглицеринов и, в конечном счете, жирных кислот и глицерина.

Переэтерификация
Большое практическое значение имеет группа реакций, при которых идет обмен ацильных групп (ацильная миграция), приводящий к образованию молекул новых ацилглицеринов. Триацилглицерины при температур

РЕАКЦИИ АЦИЛГЛИЦЕРИНОВ С УЧАСТИЕМ УГЛЕВОДОРОДНЫХ РАДИКАЛОВ
Присоединение водорода (гидрирование ацилглицеринов) Гидрирование масел и жиров молекулярным водородом в промышленности проводят при температурах 180–240°C в присутствии н

Окисление ацилглицеринов
Жиры и масла, особенно содержащие радикалы ненасыщенных жирных кислот, окисляются кислородом воздуха. Первыми продуктами окисления являются разнообразные по строению гидропероксиды. Они получили на

СВОЙСТВА И ПРЕВРАЩЕНИЯ ГЛИЦЕРОФОСФОЛИПИДОВ
Глицерофосфолипиды – бесцветные вещества, без запаха, хорошо растворимы в жидких углеводородах и их галогенпроизводных, отдельные группы различаются растворимостью в спиртах, ацетоне. Они существую

МЕТОДЫ ВЫДЕЛЕНИЯ ЛИПИДОВ ИЗ СЫРЬЯ И ПИЩЕВЫХ ПРОДУКТОВ И ИХ АНАЛИЗ
Анализ липидов и продуктов их превращений является сложной задачей, требующей применения, наряду с классическими химическими методами, современных физико–химических методов исследования (хроматогра

ПИЩЕВАЯ ЦЕННОСТЬ МАСЕЛ И ЖИРОВ
Растительные жиры и масла являются обязательным компонентом пищи, источником энергетического и пластического материала для человека, поставщиком ряда необходимых для него веществ (непредельных жирн

ПРЕВРАЩЕНИЯ ЛИПИДОВ ПРИ ПРОИЗВОДСТВЕ ПРОДУКТОВ ПИТАНИЯ
При получении продуктов питания, как в промышленности, так и в домашних условиях, в ходе технологического потока липиды исходного сырья (зерно, крупа, мясо и молоко, жиры и масла, плоды и овощи и д

РОЛЬ МИНЕРАЛЬНЫХ ВЕЩЕСТВ В ОРГАНИЗМЕ ЧЕЛОВЕКА
Многие элементы в виде минеральных солей, ионов, комплексных соединений и органических веществ входят в состав живой материи и являются незаменимыми нутриентами, которые должны ежедневно потреблять

Макроэлементы
Кальций.Это основной структурный компонент костей и зубов; входит в состав ядер клеток, клеточных и тканевых жидкостей, необходим для свертывания крови. Кальций образуе

Микроэлементы
Железо.Этот элемент необходим для биосинтеза соединений, обеспечивающих дыхание, кроветворение; он участвует в иммунобиологических и окислительно–восстановительных реакциях; входит

ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКОЙ ОБРАБОТКИ НА МИНЕРАЛЬНЫЙ СОСТАВ ПИЩЕВЫХ ПРОДУКТОВ
При переработке пищевого сырья, как правило, происходит снижение содержания минеральных веществ (кроме добавления пищевой соли). В растительных продуктах они теряются с отходами. Так, содержание ря

МЕТОДЫ ОПРЕДЕЛЕНИЯ МИНЕРАЛЬНЫХ ВЕЩЕСТВ
Для анализа минеральных веществ в основном используются физико–химические методы – оптические и электрохимические. Практически все эти методы требуют особой подготовки проб для анализа, ко

Электрохимические методы анализа
Ионометрия.Метод служит для определения ионов K+, Na+, Ca2+, Mn2+, F–, I–, Сl– и т. д. Метод о

ВОДОРАСТВОРИМЫЕ ВИТАМИНЫ
Витамин С(L–аскорбиновая кислота). Впервые выделен из лимона. В химическом отношении представляет собой γ–лактон 2,3–дегидро–4–гулоновой кислоты, легко переходит в окисленную

ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ
Витамин А.Встречается в качестве четырех индивидуальных представителей: ретинол, ретин ил ацетат, ретиналь, ретиноевая кислота. Ретинол в химическом отношении – непредельный одноат

ВИТАМИНОПОДОБНЫЕ СОЕДИНЕНИЯ
Витаминоподобные соединения, как уже указывалось, относятся к биологически активным соединениям, выполняющим важные и разнообразные функции в организме. Их можно разделить на несколько

ВИТАМИНИЗАЦИЯ ПРОДУКТОВ ПИТАНИЯ
Здоровое питание населения является одним из важнейших условий здоровья нации. Массовые обследования, проведенные Институтом питания РАМН, свидетельствуют о дефиците витаминов у большей части насел

ОБЩАЯ ХАРАКТЕРИСТИКА КИСЛОТ ПИЩЕВЫХ ОБЪЕКТОВ
Основные источники пищевых кислот – растительное сырье и продукты его переработки. Органические пищевые кислоты содержатся в большинстве видов растительных пищевых объектов – ягодах, фруктах, овоща

ПИЩЕВЫЕ КИСЛОТЫ И ИХ ВЛИЯНИЕ НА КАЧЕСТВО ПРОДУКТОВ
Пищевые кислоты в составе продовольственного сырья и продуктов выполняют различные функции, связанные с качеством пищевых объектов. В составе комплекса вкусоароматических веществ они участ

РЕГУЛЯТОРЫ КИСЛОТНОСТИ ПИЩЕВЫХ СИСТЕМ
Наличие пищевых кислот в продукте может являться следствием преднамеренного введения кислоты в пищевую систему в ходе технологического процесса для регулирования ее рН. В этом случае пищев

ПИЩЕВЫЕ КИСЛОТЫ В ПИТАНИИ
Значение пищевых кислот в питании человека определяется их энергетической ценностью (табл. 7.5) и участием в обмене веществ. Обычно они не вызывают дополнительной кислотной нафузки в организме, оки

МЕТОДЫ ОПРЕДЕЛЕНИЯ КИСЛОТ В ПИЩЕВЫХ ПРОДУКТАХ
В основе определения рН различных пищевых систем лежат стандартные методы, описанные в руководствах по аналитической химии. К ним относятся калориметрический и электрометрический методы. О

ОБЩИЕ СВОЙСТВА ФЕРМЕНТОВ
Ферменты - биологические катализаторы белковой природы. Они значительно повышают скорость химических реакций, которые в отсутствие ферментов протекают очень медленно. При этом ферменты не расходуют

Ферментативная кинетика
Ферментативный катализ существенно отличается от неферментативного, в связи с чем в кинетике ферментативных реакций разработаны совершенно особые закономерности. Они позволяют выделить ферментативн

Влияние концентрации фермента на скорость ферментативной реакции.
Концентрация фермента оказывает существенное влияние на скорость ферментативной реакции. При насыщающей концентрации субстрата, обеспечивающей Vmax, начальная скорость ферментатив

Оксидоредуктазы
Полифенолоксидаза (Н.Ф. 1.14.18.1). Этот фермент известен под различными тривиальными названиями: о-дифенолоксидаза, тирозиназа, фенолаза, катехолаза и др. Фермент может катализировать окисл

Гидролитические ферменты
Роль ферментов класса гидролаз в пищевых технологиях очень велика. Это находит отражение в специальной литературе, монографиях, технических инструкциях, стандартах. Поэтому в этом разделе остановим

ПРИМЕНЕНИЕ ФЕРМЕНТОВ В ПИЩЕВЫХ ТЕХНОЛОГИЯХ
Ферментные препараты в отличие от ферментов содержат помимо активного фермента множество балластных веществ, в том числе и других белков. Кроме того, большинство ферментных препаратов являются комп

Мукомольное производство и хлебопечение
Качество хлеба определяется особенностями химического состава муки и активностью ее ферментного комплекса. Значительное влияние оказывают также условия брожения и выпечки. Получить хлеб

Производство крахмала и крахмалопродуктов
Современная крахмал о-паточная промышленность, используя в основном традиционные источники сырья — картофель и кукурузу, — вырабатывает большой ассортимент продукции, включающий десятки наименовани

Кондитерское производство
Кондитерские изделия в зависимости от вида сырья и типа технологического процесса подразделяют на две группы: мучные и сахаристые. К мучным изделиям относятся печенье, галеты, крекеры, вафли, пряни

Производство плодово-ягодных соков, безалкогольных напитков и вин
Применение ферментных препаратов при производстве плодово-ягодных соков, вин и безалкогольных напитков осуществляется с целью повышения выхода сока, осветления и стабилизации соков, без

Спиртные напитки и пивоварение
Производство спиртных напитков.Производство спиртных напитков из крахмалсодержащего сырья практикуется почти во всех странах мира. Основными видами сырья являются картофель и рожь

ИММОБИЛИЗОВАННЫЕ ФЕРМЕНТЫ
В различных пищевых технологиях долгое время применялись лишь препараты свободных ферментов, срок использования которых — один производственный цикл. Однако достижения молекулярной биологии, биохим

ФЕРМЕНТАТИВНЫЕ МЕТОДЫ АНАЛИЗА ПИЩЕВЫХ ПРОДУКТОВ
Ферментативный анализ представляет собой один из основных аналитических инструментов в международной и отечественной практике научных исследований, современного производственного и сертификационног

ОБЩИЕ СВЕДЕНИЯ О ПИЩЕВЫХ ДОБАВКАХ
Пищевые добавки — природные, идентичные природным или искусственные (синтетические) вещества, сами по себе не употребляемые как пищевой продукт или обычный компонент пищи. Они преднамеренно добавля

Общие подходы к подбору технологических добавок
Эффективность применения пищевых добавок, особенно проявляющих технологические функции, требует создания технологии их подбора и внесения с учетом особенностей химического строения, функциональных

О безопасности пищевых добавок
Пищевые добавки, спектр применения которых непрерывно расширяется, выполняют разнообразные функции в пищевых технологиях и продуктах питания. Использование добавок возможно только после

ВЕЩЕСТВА, УЛУЧШАЮЩИЕ ВНЕШНИЙ ВИД ПИЩЕВЫХ ПРОДУКТОВ
Пищевые красители Основной группой веществ, определяющих внешний вид продуктов питания, являются пищевые красители (функциональный класс 7, табл. 9.1). Потребитель давно привык к

Цветокорректирующие материалы
В пищевой промышленности применяются соединения, изменяющие окраску продукта в результате взаимодействия с компонентами сырья и готовых продуктов. Среди них отбеливающие вещества — добавки, предотв

ВЕЩЕСТВА, ИЗМЕНЯЮЩИЕ СТРУКТУРУ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПИЩЕВЫХ ПРОДУКТОВ
К этой группе пищевых добавок могут быть отнесены вещества, используемые для создания необходимых или изменения существующих реологических свойств пищевых продуктов, т. е. добавки, регулирующие или

Эмульгаторы
В эту группу пищевых добавок (функциональный класс 9) входят вещества, которые, будучи добавленными к пищевому продукту, обеспечивают возможность образования и сохранения однородной дисперсии двух

ВЕЩЕСТВА, ВЛИЯЮЩИЕ НА ВКУС И АРОМАТ ПИЩЕВЫХ ПРОДУКТОВ
При оценке пищевых продуктов особое внимание потребитель уделяет их вкусу и аромату. Большую роль тут играют традиции, привычки, ощущение гармонии, которое возникает в организме человека при употре

Подслащивающие вещества
В пищевой промышленности, кулинарии, при приготовлении пищи в домашних условиях с давних времен широко применяются вещества, обладающие сладким вкусом, — подслащивающие вещества (подсластители). По

Ароматизаторы
Аромат пищевого продукта — интегральный фактор, обусловленный присутствием в нем сложной смеси органических соединений, содержавшихся ранее в сырье (I), образовавшихся под влиянием ряда факторов в

Пищевые добавки, усиливающие и модифицирующие вкус и аромат
Пищевые добавки, усиливающие и модифицирующие вкус и запах продуктов питания — функциональный класс 12 (табл. 9.1), включают соединения, усиливающие и модифицирующие вкус пищевых продуктов, и вещес

ПИЩЕВЫЕ ДОБАВКИ, ЗАМЕДЛЯЮЩИЕ МИКРОБИОЛОГИЧЕСКУЮ И ОКИСЛИТЕЛЬНУЮ ПОРЧУ ПИЩЕВОГО СЫРЬЯ И ГОТОВЫХ ПРОДУКТОВ
Порча пищевого сырья и готовых продуктов является результатом сложных физико-химических и микробиологических процессов: гидролитических, окислительных, развития микробиальной флоры. Они тесно связа

Консерванты
Консерванты — вещества, продлевающие срок хранения продуктов, защищая их от порчи, вызванной микроорганизмами (бактерии, плесневые грибы, дрожжи, среди которых могут быть патогенные и непатогенные

Антибиотики
Особую группу пищевых добавок, замедляющих порчу пищевых продуктов (мяса, рыбы, птицы, овощей и т. д.), составляют антибиотики. Антибиотики, разрешенные для применения с медицинскими целями, не доп

Пищевые антиокислители
К пищевым антиокислителям (антиоксидантам) относятся вещества, замедляющие окисление в первую очередь ненасыщенных жирных кислот, входящих в состав липидов (функциональный класс 5). Этот класс пище

БИОЛОГИЧЕСКИ АКТИВНЫЕ ДОБАВКИ
Биологически активные добавки (БАД) или food supplements — природные (идентичные природным) биологически активные вещества, предназначенные для употребления одновременно с пищей или введения в сост

Физические свойства воды и льда
Вода имеет молекулярную массу примерно равную 18,02 и может существовать в состояниях жидкости, пара и льда, характеризующихся следующими показателями фазовых переходов: Точ

Диаграмма состояния воды
Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в систе

Строение молекулы и свойства воды
Аномальные свойства воды предполагают существование прочных сил между молекулами воды. Это можно объяснить уже при рассмотрении природы единичной молекулы воды, а затем и группы молекул. Шесть вале

Взаимодействие вода — растворенное вещество
При добавлении различных веществ к воде изменяются свойства как самого вещества, так и воды. Гидрофильные вещества взаимодействуют с водой путем ион-дипольного или диполь-дипольного механизма, вызы

Структура и свойства льда
Молекула воды, кристаллизуясь, может связывать четыре других молекулы воды в тетраэдрической конфигурации. Поэтому образующийся лед имеет гексагональную кристаллическую решетку. Структура льда была

СВОБОДНАЯ И СВЯЗАННАЯ ВЛАГА В ПИЩЕВЫХ ПРОДУКТАХ
Вода в пищевых продуктах играет, как уже отмечалось, важную роль, т. к. обусловливает консистенцию и структуру продукта, а ее взаимодействие с присутствующими компонентами определяет устойчивость п

АКТИВНОСТЬ ВОДЫ
Давно известно, что существует взаимосвязь (хотя и далеко не совершенная) между влагосодержанием пищевых продуктов и их сохранностью (или порчей). Поэтому основным методом удлинения сроков хранения

Изотермы сорбции
Кривые, показывающие связь между содержанием влаги (масса воды, г Н2О/г С В) в пищевом продукте с активностью воды в нем при постоянной температуре, называются изотермами сорбции. Информ

Активность воды и стабильность пищевых продуктов
С учетом вышесказанного ясно, что стабильность пищевых продуктов и активность воды тесно связаны. На рис. 10.8 показано отношение между aw и скоростью различных реакций, происхо

РОЛЬ ЛЬДА В ОБЕСПЕЧЕНИИ СТАБИЛЬНОСТИ ПИЩЕВЫХ ПРОДУКТОВ
Замораживание является наиболее распространенным способом консервирования (сохранения) многих пищевых продуктов. Необходимый эффект при этом достигается в большей степени от воздействия низкой темп

Определение общего содержания влаги
Высушивание до постоянной массы.Содержание влаги рассчитывают по разности массы образца до и после высушивания в сушильном шкафу при температуре 100 — 105°С. Это — стандартный мето

ОКРУЖАЮЩАЯ СРЕДА - ОСНОВНОЙ ИСТОЧНИК ЗАГРЯЗНЕНИЯ СЫРЬЯ И ПИЩЕВЫХ ПРОДУКТОВ
Загрязнение продовольственного сырья и пищевых продуктов чужеродными веществами или ксенобиотиками напрямую зависит от степени загрязнения окружающей среды. В результате хозяйственной деят

Меры токсичности веществ
Количественная характеристика токсичности веществ достаточно сложна и требует многостороннего подхода. Судить о ней приходится по результатам воздействия вещества на живой организм, для которого ха

Токсичные элементы
Токсичные элементы (в частности, некоторые тяжелые металлы) составляют обширную и весьма опасную в токсикологическом отношении группу веществ. Обычно рассматривают 14 элементов: Hg, Pb, Cd, As, Sb,

Радиоактивное загрязнение
Источники радиоактивности, как и другие загрязнители, являются компонентами пищевых цепей: атмосфера-ветер-дождь-почва-растения-животные-человек. Анализируя данные о взаимодействии радионуклидов с

Диоксины и диоксинподобные соединения
Диоксины - высокотоксичные соединения, обладающие мутагенными, канцерогенными и тератогенными свойствами. Они представляют реальную угрозу загрязнения пищевых продуктов, включая воду.

Полициклические ароматические углеводороды
Полициклические ароматические углеводороды (ПАУ) - насчитывают более 200 представителей, которые являются сильными канцерогенами. К наиболее активным канцерогенам относят 3,4-бенз(а)пирен,

Загрязнения веществами, применяемыми в растениеводстве
Остатки сельскохозяйственных ядохимикатов представляют наиболее значительную группу загрязнителей, так как присутствуют почти во всех пищевых продуктах. В эту группу загрязнителей входят пестициды

Загрязнение веществами, применяемыми в животноводстве
С целью повышения продуктивности сельскохозяйственных животных, профилактики заболеваний, сохранения качества кормов в животноводстве широко применяются различные лекарственные и химические препара

ПРИРОДНЫЕ ТОКСИКАНТЫ
Природные токсины, не уступающие по канцерогенной активности антропогенным ксенобиотикам, из-за своей широкой распространенности и очень высокой степени нагрузки на организм человека представляют о

Микотоксины
Микотоксины (от греч. mukes - гриб и toxicon - яд) - это вторичные метаболиты микроскопических плесневых грибов, обладающие выраженными токсическими свойствами. Они не являются эссенциальны-ми для

Методы определения микотоксинов и контроль за загрязнением пищевых продуктов
Методы определения микотоксинов.Современные методы обнаружения и определения содержания микотоксинов в пищевых продуктах и кормах включают скрининг-методы, количественные аналитиче

АНТИАЛИМЕНТАРНЫЕ ФАКТОРЫ ПИТАНИЯ
Помимо чужеродных соединений, загрязняющих пищевые продукты, так называемых контаминантов-загрязнителей, и природных токсикантов, необходимо учитывать действие веществ, не обладающих общей

МЕТАБОЛИЗМ ЧУЖЕРОДНЫХ СОЕДИНЕНИЙ
Механизм детоксикации ксенобиотиков - две фазы.Изучение метаболизма чужеродных соединений, превращений, которые они претерпевают, попадая в организм человека, важны, в первую очере

Фальсификация: аспект безопасности
С точки зрения безопасности продуктов питания значительную опасность могут представлять и некоторые виды фальсификации пищевых продуктов. Как правило, это виды ассортиментной фальсификации, которые

Генетически модифицированные продукты питания
Генетически модифицированные (трансгенные) продукты питания представляют особый интерес. Сообщения о генетически модифицированных растениях и полученных из них продуктах питания появились в начале

ФИЗИОЛОГИЧЕСКИЕ АСПЕКТЫ ХИМИИ ПИЩЕВЫХ ВЕЩЕСТВ
Продукты, употребляемые человеком в пищу в натуральном или переработанном виде (пищевые продукты), представляют собой сложные системы с единой внутренней структурой и общими физико-химическими свой

ПИТАНИЕ И ПИЩЕВАРЕНИЕ
Пищеварение является начальным этапом ассимиляции пищевых веществ, который состоит в превращении исходных пищевых структур сложного химического состава в компоненты, лишенные видовой специфичности,

Основные пищеварительные процессы
В общем случае физические и физико-химические изменения пищи заключаются в ее размельчении, перемешивании, набухании, частичном растворении, образовании суспензий и эмульсий; химические изменения с

Схемы процессов переваривания макронутриентов
Основными конечными продуктами гидролитического расщепления высокомолекулярных веществ, содержащихся в пище, являются мономеры. Каждый из трех видов макронутриентов имеет свою схему процесса перева

Метаболизм макронутриентов
Основными конечными продуктами гидролитического расщепления содержащихся в пище макронутриентов являются мономеры (сахара, аминокислоты, высшие жирные кислоты), которые, подвергаясь всасыванию на у

ТЕОРИИ И КОНЦЕПЦИИ ПИТАНИЯ
Формирование научных представлений о питании и роли пищевых веществ в процессах жизнедеятельности началось лишь в середине XIX в.

Первый принцип рационального питания
Пища для человеческого организма, прежде всего, является источником энергии. Именно при ее превращениях - окислении и распаде сложных веществ на более простые - происходит выделение энергии, необхо

Второй принцип рационального питания
В соответствии со вторым принципом рационального питания, должно быть обеспечено удовлетворение потребности организма в основных пищевых веществах, включающих источники энергии (белки, жиры, углево

Третий принцип рационального питания
Согласно третьему принципу рационального питания, принципиальным для нормального функционирования организма является не только какие продукты питания и в каком количестве потребляет человек, но и т

РЕКОМЕНДУЕМЫЕ НОРМЫ ПОТРЕБЛЕНИЯ ПИЩЕВЫХ ВЕЩЕСТВ И ЭНЕРГИИ
Согласно принципам рационального питания, чтобы сохранить здоровье на многие годы, человек должен поддерживать баланс энергии, потреблять разнообразный и сбалансированный рацион, соблюдать режим пи

ПИЩЕВОЙ РАЦИОН СОВРЕМЕННОГО ЧЕЛОВЕКА. ОСНОВНЫЕ ГРУППЫ ПИЩЕВЫХ ПРОДУКТОВ
Пищевой рацион современного человека, определяющий в итоге его здоровье, формируется на базе физиологических потребностей в энергии, макро- и микронутриентах с учетом трех принципов рационального п

КОНЦЕПЦИЯ ЗДОРОВОГО ПИТАНИЯ. ФУНКЦИОНАЛЬНЫЕ ИНГРЕДИЕНТЫ И ПРОДУКТЫ
Концепция здорового (позитивного, функционального) питания была сформулирована в начале 80-х гг. в Японии, где приобрели большую популярность так называемые функциональные продукты (сокращенное наз

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги